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Occam:
a query planning algorithm that determines the best 
way to integrate data from different sources.

It seeks the simplest plans that gather all information 
requested by the user.
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The Problem
� The exponential growth of Internet
� documents
� databases
� services

� Almost any type of information is available 
somewhere, but most users can¡t find it!

� Even expert users waste copious time and 
effort searching for appropriate information 
sources.
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A Simple Example
� Problem:
� Find out the names of all people in an office.
� Assumption: no such database exists

� Information sources:
> finger  user@host

returns name of person with the specified email 
> userid-room 021

returns email addresses of all occupants in an office
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A Solution
� Issue the userid-room command to get a 

list of email addresses
� Run finger on each of the email addresses 

returned

�Occam reasons about the capabilities of 
information sources.

�Occam generates multiple plans in order to 
gather as much information as possible.
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Action Language

� Knowledge preconditions only
� No causal effects
� No sibling-subgoal interactions
�Model the information instead of world state
� A single unified world model, independent 

from the conceptualization used by the 
information sources.

� Highly specialized planning algorithm
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World Model
� A single, unified relational database schema
� email(F, L, E)
� office(F, L, O)

�Occam is typed, for example
email(F, L, E)
¡ F and L are of type name,
¡ E is of type email
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Information-Producing Sites
� Represent information sources by modeling 

the type of queries they can handle.
query output <-> relations in the world model

� A site may be described by multiple operators. 
� operator: head => body
� head: name of the operator + arguments
� body: conjunction of atomic formulae whose 

predicate symbols denote relations in the world 
model.
op(X1,¡ ,Xn) => r1(¡ ,Xi,¡ ) � ... � rm(¡ ,Xj,¡ )
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Binding Pattern
� Each variable can be annotated with a 

binding pattern (denoted with $) to indicate 
that the variable much be bound, e.g.

� The Unix finger command
finger(F, L, $E, O, Ph) => email(F, L, E) �
office(F, L, O) � phone(O, Ph) 

� bound variable: $E
� free arguments: F, L, O, Ph
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Operator Representation
� op(X1, ..., Xn) => 
 rel1(..., Xi, ...) � ... � relm(..., Xj, ...)
� when op is executed it will return some number 

of tuples of data
� each tuple may be thought of as an assignment 

of values to the head¡s arguments X1, ..., Xn

�Operations are not guaranteed to return all 
tuples, since most information sources are 
incomplete.
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Operator: Examples
� finger(F, L, $E, O, Ph) and E is bound to ¡sam@cs¡
� (¡Sam¡, ¡Smith¡, ¡sam@cs¡, ¡501¡, ¡542-8907¡)
� (¡Sam¡, ¡Smith¡, ¡sam@cs¡, ¡501¡, ¡542-8908¡)

� userid-room($O, E) => 
 office(F, L, O) � email(F, L, E)
� returns tuple (¡501¡, ¡sam@cs¡)
� Interpretation of unbound variables:

exists F, L such that 
 office(F, L, ¡501¡) � email(F, L, ¡sam@cs¡)
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Query Representation
� Any tuple satisfying the body satisfied the query
� For example:

query-for-first-names($O, F) <= office(F, L, O)
� Variable O must be bound. 
� The query requests a set of values for F.

� if Joe Researcher and Jane Goodhacker are 
the occupants of office 429, then the tuples 

(¡429¡, ¡Joe¡) and (¡429¡, ¡Jane) are 
possible answers for query-for-first-name(¡429¡, 
F)
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Plans
� query-for-first-name(¡429¡, F)
� If some site stores the complete office relation 

office(F, L, O), it¡s easy.
� Problem: such data repository may not exist
� data repository doesn¡t support relational queries
� data is distributed across multiple sites

� Solution:
� Build a plan
� Execute the plan
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Plan Representation
� A plan has the same representation as an 

operator whose body is an ordered 
conjunction of operator instances.

� Example: a two-step plan:
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)
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Plan Interpretation
� The body of a plan is a logical conjunction
� the order is unimportant

� The body can be viewed procedurally
� the order is very important

� A plan¡s head specifies what information is 
actually returned to the user. E.g.
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)
� last names are not returned to the user
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Solutions to a Query
plan(X1, ..., Xn) => O1 � ... � Ok is a solution to
query(Y1, ..., Yn) <= rel1(..., Yi, ...) � ... � relm(..., Yj, ...) 

if
� The binding patterns of the plan¡s operator 

instances are satisfied.
� All tuples satisfying plan(X1, ..., Xn) must satisfy 

query(X1, ..., Xn) 
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Binding Pattern Satisfaction
� The binding patterns of the plan¡s operator 

instances are satisfied.
� I.e. if $V is a bound argument of Oj then
� V must be used as a free argument to some other 

operator instance Oi where i < j, or
� a value of V must be a bound argument in the 

query head.
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Query Satisfaction
� All tuples satisfying plan (X1, ..., Xn) must 

satisfy query (X1, ..., Xn) 
� In other words, for all c1, ... , cn

plan(c1 , ..., cn) => query(c1 , ..., cn)
where each ci is a constant.
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Solutions: Example
� plan($O, F)
� query-for-first-name($O, F)
� userid-room($O, E)
� finger(F, L, $E, O, Ph)

� The plan
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)

is a solution to query-for-first-name(¡429¡, F)

� The binding patterns are satisfied.
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Solutions: Query Satisfaction
 plan(c1, c2)

 => userid-room(c1, E) � finger(c2, L, E, c1, Ph)

 => office (F0, L0, c1) � email(F0, L0, E) �
 email(c1, L, E) � office(c2, L, c1) � phone(O,Ph)

 => office(c2, L, c1)

 => query-for-first-name(c1, c2)
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Occam Planning Algorithm
� input: a query and a set of operators
� output: a set of plans, each of which is 

guaranteed to be a solution
�Occam(Q,O): a forward-chaining algorithm for 

generating query plans
� InstantiateOp(Op,B) : generate a set of 

operator instances given an operator Op and 
a set B of bound variables.

� FindSolutions(Seq,Q): generate solution 
plans from given sequences
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Occam: Main Idea
� Start from the empty sequence
� Search the space of totally ordered 

sequences of operator instances
� Proceed until all alternatives are exhausted, 

or a resource bound is exceeded
� Each sequence is expanded by postpending 

an instance of each potential operator to 
produce several new sequences.
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Redundant Solutions
�A solution is redundant if we can 

eliminate operator instances from the 
plan and still obtain a solution.
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Redundant Solutions: Example
> op1(X) => rel1(X)
> op2($X, Y) => rel2(X, Y)
> op3($X, Y) => rel2(X, Y) � rel1(Y) 

� query(X) => rel1(X)

> plan1(A) => op1(A)
> plan2(A) => op1(A) � op2(A, B)
> plan3a(A) => op1(A) � op3(A, B)
> plan3b(B) => op1(A) � op3(A, B)
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Reducing Search (1/3)
� Pruning Plans with Duplicate Operator 

Instances
� O1 and O2 are equivalent if all bound arguments of 

O1 are equal to the variables in O2

userid-room(A, B), userid-room(C, B)   [not euqal]
userid-room(A, B), userid-room(A, C)   [euqal]

�We reject any sequence that contain two 
equivalent operator instances.
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Reducing Search (2/3)
� Pruning Shuffled Sequences

> op1(X, Y) => rel1(X, Y)
> op2($X, Y) => rel2(X, Y)

> s1: op1(A, B) � op2(A, C) � op2(B, D)
> s2: op1(A, B) � op2(B, D) � op2(A, C) 
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Reducing Search (3/3)
�We say operator instance Oi is independent 

on Oj, if neither
� Oi has a bound argument that appears as a free 

variable in Oj, nor
� There exists an instance Ok such that Oi is 

dependent on Ok and Ok is dependent on Oj

� If two operator instances are independent, 
then Occam does not need to consider both 
ordering permutations.
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Features of Occam
�Query planning algorithm
� Domain-independent
� Sound
� Complete
� Efficient

�Multiple information sources
� legacy systems
� relational databases

� Reasoning about capabilities of info sources
� Handling partial goal satisfaction
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Occam¡s Razor
The simplest of two or more 
competing theories is preferable.

William of Occam (1285-1349):
¡It is vain to do with more what can be done 
with less.¡


