
Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Planning to Gather Information
Chung T. Kwok & Daniel S. Weld
CSE, University of Washington

Occam:
a query planning algorithm that determines the best 
way to integrate data from different sources.

It seeks the simplest plans that gather all information 
requested by the user.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

The Problem
� The exponential growth of Internet
� documents
� databases
� services

� Almost any type of information is available 
somewhere, but most users can¡t find it!

� Even expert users waste copious time and 
effort searching for appropriate information 
sources.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

A Simple Example
� Problem:
� Find out the names of all people in an office.
� Assumption: no such database exists

� Information sources:
> finger  user@host

returns name of person with the specified email 
> userid-room 021

returns email addresses of all occupants in an office

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

A Solution
� Issue the userid-room command to get a 

list of email addresses
� Run finger on each of the email addresses 

returned

�Occam reasons about the capabilities of 
information sources.

�Occam generates multiple plans in order to 
gather as much information as possible.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Action Language

� Knowledge preconditions only
� No causal effects
� No sibling-subgoal interactions
�Model the information instead of world state
� A single unified world model, independent 

from the conceptualization used by the 
information sources.

� Highly specialized planning algorithm

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

World Model
� A single, unified relational database schema
� email(F, L, E)
� office(F, L, O)

�Occam is typed, for example
email(F, L, E)
¡ F and L are of type name,
¡ E is of type email



Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Information-Producing Sites
� Represent information sources by modeling 

the type of queries they can handle.
query output <-> relations in the world model

� A site may be described by multiple operators. 
� operator: head => body
� head: name of the operator + arguments
� body: conjunction of atomic formulae whose 

predicate symbols denote relations in the world 
model.
op(X1,¡ ,Xn) => r1(¡ ,Xi,¡ ) � ... � rm(¡ ,Xj,¡ )

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Binding Pattern
� Each variable can be annotated with a 

binding pattern (denoted with $) to indicate 
that the variable much be bound, e.g.

� The Unix finger command
finger(F, L, $E, O, Ph) => email(F, L, E) �
office(F, L, O) � phone(O, Ph) 

� bound variable: $E
� free arguments: F, L, O, Ph

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Operator Representation
� op(X1, ..., Xn) => 
 rel1(..., Xi, ...) � ... � relm(..., Xj, ...)
� when op is executed it will return some number 

of tuples of data
� each tuple may be thought of as an assignment 

of values to the head¡s arguments X1, ..., Xn

�Operations are not guaranteed to return all 
tuples, since most information sources are 
incomplete.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Operator: Examples
� finger(F, L, $E, O, Ph) and E is bound to ¡sam@cs¡
� (¡Sam¡, ¡Smith¡, ¡sam@cs¡, ¡501¡, ¡542-8907¡)
� (¡Sam¡, ¡Smith¡, ¡sam@cs¡, ¡501¡, ¡542-8908¡)

� userid-room($O, E) => 
 office(F, L, O) � email(F, L, E)
� returns tuple (¡501¡, ¡sam@cs¡)
� Interpretation of unbound variables:

exists F, L such that 
 office(F, L, ¡501¡) � email(F, L, ¡sam@cs¡)

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Query Representation
� Any tuple satisfying the body satisfied the query
� For example:

query-for-first-names($O, F) <= office(F, L, O)
� Variable O must be bound. 
� The query requests a set of values for F.

� if Joe Researcher and Jane Goodhacker are 
the occupants of office 429, then the tuples 

(¡429¡, ¡Joe¡) and (¡429¡, ¡Jane) are 
possible answers for query-for-first-name(¡429¡, 
F)

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Plans
� query-for-first-name(¡429¡, F)
� If some site stores the complete office relation 

office(F, L, O), it¡s easy.
� Problem: such data repository may not exist
� data repository doesn¡t support relational queries
� data is distributed across multiple sites

� Solution:
� Build a plan
� Execute the plan



Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Plan Representation
� A plan has the same representation as an 

operator whose body is an ordered 
conjunction of operator instances.

� Example: a two-step plan:
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Plan Interpretation
� The body of a plan is a logical conjunction
� the order is unimportant

� The body can be viewed procedurally
� the order is very important

� A plan¡s head specifies what information is 
actually returned to the user. E.g.
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)
� last names are not returned to the user

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Solutions to a Query
plan(X1, ..., Xn) => O1 � ... � Ok is a solution to
query(Y1, ..., Yn) <= rel1(..., Yi, ...) � ... � relm(..., Yj, ...) 

if
� The binding patterns of the plan¡s operator 

instances are satisfied.
� All tuples satisfying plan(X1, ..., Xn) must satisfy 

query(X1, ..., Xn) 

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Binding Pattern Satisfaction
� The binding patterns of the plan¡s operator 

instances are satisfied.
� I.e. if $V is a bound argument of Oj then
� V must be used as a free argument to some other 

operator instance Oi where i < j, or
� a value of V must be a bound argument in the 

query head.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Query Satisfaction
� All tuples satisfying plan (X1, ..., Xn) must 

satisfy query (X1, ..., Xn) 
� In other words, for all c1, ... , cn

plan(c1 , ..., cn) => query(c1 , ..., cn)
where each ci is a constant.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Solutions: Example
� plan($O, F)
� query-for-first-name($O, F)
� userid-room($O, E)
� finger(F, L, $E, O, Ph)

� The plan
plan(¡429¡, F) =>

 userid-room(¡429¡, E) � finger(F, L, E, ¡429¡, Ph)

is a solution to query-for-first-name(¡429¡, F)

� The binding patterns are satisfied.



Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Solutions: Query Satisfaction
 plan(c1, c2)

 => userid-room(c1, E) � finger(c2, L, E, c1, Ph)

 => office (F0, L0, c1) � email(F0, L0, E) �
 email(c1, L, E) � office(c2, L, c1) � phone(O,Ph)

 => office(c2, L, c1)

 => query-for-first-name(c1, c2)

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Occam Planning Algorithm
� input: a query and a set of operators
� output: a set of plans, each of which is 

guaranteed to be a solution
�Occam(Q,O): a forward-chaining algorithm for 

generating query plans
� InstantiateOp(Op,B) : generate a set of 

operator instances given an operator Op and 
a set B of bound variables.

� FindSolutions(Seq,Q): generate solution 
plans from given sequences

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Occam: Main Idea
� Start from the empty sequence
� Search the space of totally ordered 

sequences of operator instances
� Proceed until all alternatives are exhausted, 

or a resource bound is exceeded
� Each sequence is expanded by postpending 

an instance of each potential operator to 
produce several new sequences.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Redundant Solutions
�A solution is redundant if we can 

eliminate operator instances from the 
plan and still obtain a solution.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Redundant Solutions: Example
> op1(X) => rel1(X)
> op2($X, Y) => rel2(X, Y)
> op3($X, Y) => rel2(X, Y) � rel1(Y) 

� query(X) => rel1(X)

> plan1(A) => op1(A)
> plan2(A) => op1(A) � op2(A, B)
> plan3a(A) => op1(A) � op3(A, B)
> plan3b(B) => op1(A) � op3(A, B)

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Reducing Search (1/3)
� Pruning Plans with Duplicate Operator 

Instances
� O1 and O2 are equivalent if all bound arguments of 

O1 are equal to the variables in O2

userid-room(A, B), userid-room(C, B)   [not euqal]
userid-room(A, B), userid-room(A, C)   [euqal]

�We reject any sequence that contain two 
equivalent operator instances.



Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Reducing Search (2/3)
� Pruning Shuffled Sequences

> op1(X, Y) => rel1(X, Y)
> op2($X, Y) => rel2(X, Y)

> s1: op1(A, B) � op2(A, C) � op2(B, D)
> s2: op1(A, B) � op2(B, D) � op2(A, C) 

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Reducing Search (3/3)
�We say operator instance Oi is independent 

on Oj, if neither
� Oi has a bound argument that appears as a free 

variable in Oj, nor
� There exists an instance Ok such that Oi is 

dependent on Ok and Ok is dependent on Oj

� If two operator instances are independent, 
then Occam does not need to consider both 
ordering permutations.

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Features of Occam
�Query planning algorithm
� Domain-independent
� Sound
� Complete
� Efficient

�Multiple information sources
� legacy systems
� relational databases

� Reasoning about capabilities of info sources
� Handling partial goal satisfaction

Intelligent 
Mobile Robot 
Group

Jane Hsu
yjhsu@csie.ntu.edu.tw

Occam¡s Razor
The simplest of two or more 
competing theories is preferable.

William of Occam (1285-1349):
¡It is vain to do with more what can be done 
with less.¡


