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Abstract 
 

Calendar scheduling is a necessary but tedious 
job in daily life.  Even with the help of scheduling 
software, a user has to specify his/her personal 
scheduling criteria repeatedly in each delegation.  
This paper presents a software agent that learns a 
user's scheduling patterns from past experience, and 
suggests relevant scheduling criteria when the user 
wants to arrange a new activity.  New schemas of 
scheduling criteria are induced using decision trees. 
To improve the agent’s learning performance, an 
enhanced decision tree algorithm, HID3, is proposed. 
Moreover, the agent observes the calendar of a user 
to identify inconsistency between his actual behavior 
and scheduling criteria.  The agent can alert user of 
such inconsistency and suggest updates to his 
scheduling criteria.  Experimental data show that 
the proposed personal calendar agent can not only 
learn a user's scheduling criteria with high accuracy, 
but also keep up with subsequent changes.   
 

1. Introduction 
 

Calendar scheduling is a necessary but tedious 
job in daily life.  When scheduling an activity, one 
must consider personal restrictions and preferences 
as well as external factors such as the schedules of 
the other participants, and any required resources.  
There have been software developed to help people 
manage their calendars and schedule their daily 
activities.  For example, Haynes et al. [1] proposed 
a community of distributed software agents that can 
communicate with each other by e-mail, and 
schedule meetings on behalf of their users using a 
negotiation mechanism.  A user simply specifies the 
criteria of the meeting to be scheduled, then the 
agents find a time acceptable to all the participants. 

While such agents help automate the task of 
scheduling, a user needs to specify his scheduling 
criteria explicitly each time he delegates the task to 
the agents.  To further automate the scheduling 

process, we designed a personal calendar agent that 
relieves the user of repeated delegation by suggesting 
scheduling criteria learned from past experience [2]. 

In what follows, Section 2 first formulates the 
problem of calendar scheduling in terms of 
restrictions and preferences, and Section 3 describes 
the proposed learning approach.  The mechanisms 
for updating and verifying the learned results are 
presented in Sections 4 and 5.  The experimental 
results are summarized in Section 6, followed by a 
discussion of related work and the conclusion. 
 

2. Problem Formulation 
 

When a user delegates her agent to schedule her 
calendar, she has to specify the set of activities 
together with all relevant scheduling criteria initially.  
Each activity is specified by five attributes: activity 
name, participants, location, required resources, and 
activity duration.  The goal of a personal calendar 
agent is to find the best time to schedule each activity 
by learning the general patterns of a user's 
scheduling criteria and reusing them in future 
delegations. 

Each scheduling criterion is either a restriction 
or a preference.  The former defines constraints that 
must hold in the user’s calendar, while the latter 
indicates choices among alternative schedules.  
There are three kinds of restrictions as follows. 

(1) Time interval restriction constrains the time 
for a single activity.  For example, taking 
MRT can not be scheduled at 2 a.m. since the 
trains are not in service after midnight. 

(2) Precedence restriction constrains the ordering 
of two activities.  For example, one must get 
a passport before traveling abroad. 

(3) Time margin restriction constrains the time 
margin between two activities.  For example, 
the time margin between two meetings must 
be greater than the travel time between the 
two meeting places. 

Similarly, there are three types of preferences. 
(1) Time interval preference models the user's 
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preference for the execution time of a single 
activity, e.g. preferring working in the 
morning to at night. 

(2) Precedence preference models the execution 
priority of two activities, e.g. doing 
homework before playing a game. 

(3) Time margin preference indicates preferred 
time margin between two activities, e.g. 
arriving at the airport at least one hour before 
the flight’s scheduled departure. 

 
Unlike restrictions, preferences may be violated.  

For example, suppose that a user prefers “meeting in 
the afternoon”.  It is acceptable, while not ideal, to 
schedule a meeting in the morning in order to 
accommodate all meeting participants. 

The personal calendar agent induces the general 
patterns of a user's scheduling criteria, which are 
used as suggestions in scheduling new activities. The 
learned general patterns are represented as schemas.  
A schema describes the conditions of the activities 
associated with a specific restriction or preference.  
For example, given a preference schema “dislike 
meeting with John in the morning”, the agent will 
suggest “dislike morning” for all meeting in which 
John participates.  When the user wants to arrange a 
new activity, the agent suggests relevant scheduling 
criteria according to the learned schemas. 

 
3. Learning Schemas 

 
3.1 Decision Trees 
 

We use a machine learning approach, decision 
tree, to induce schemas.  The schemas for the six 
kinds of scheduling criteria are learned respectively. 

The input to a decision tree is an instance, 
which is described by a set of attributes; the output 
of the tree is a classification for that instance.  Each 
node in the tree specifies a test of some attribute of 
the instance, and each branch descending from that 
node corresponds to one of the possible values for 
this attribute [3]. 

In the decision tree for restriction schemas, the 
classification is either allowed, or forbidden; while in 
the decision tree for preference schemas, the 
classification can be one of the values {highly 
preferred, preferred, normal, disliked, highly 
disliked}.  For time interval schemas (both the 
restriction and preference schemas), the instances in 
the decision tree are activities.  For precedence and 
time margin schemas, the instances are activity pairs, 
as each schema is associated with two activities. 

For example, the decision tree in Figure 1 
represents the time interval preference with respect 
to morning.  Each path from the tree root to a leaf is 
a schema.  For instance, the rightmost path in the 

tree is the schema “dislike doing entertainment 
outdoors in the morning”. 

 

activity name

duration

exercise

disliked

2 hours

normal

0.5 hour

with John?

work

preferred

No

disliked

Yes

location

entertainment

normal

indoor

disliked

outdoor

 Figure 1: A decision tree representing the time interval 
preferences with respect to morning 
 

Figure 2 shows a decision tree for precedence 
restrictions.  Each precedence restriction is 
associated with two activities, and indicates whether 
the execution order “the first activity before the 
second activity” is allowed.  Each path in the tree 
represents a precedence restriction schema.  For 
example, the middle-left path means “meeting before 
preparing meeting materials is forbidden”. 

 

name of the
1st activity

coding

allowed

preparing
 meeting material

allowed
name of the
2nd activity

meeting

forbidden

preparing
meeting material

allowed

coding

    
Figure 2: A decision tree representing precedence restrictions 

 
The tree in Figure 3 represents time margin 

restrictions.  It indicates whether it is allowed to 
execute two activities with a time margin “0.5 hour”. 
 

location of the
1st activity

location of the
2nd activity

home

forbidden

Academia Sinica

allowed

school

location of the
2nd activity

swimming pool

forbidden

home

allowed

school

 
Figure 3: A decision tree representing the restrictions with 
respect to time margin of 0.5 hour. 

 
 



3.2 Hierarchical Concepts 
 

Two of the activity attributes, activity name and 
location, may contain hierarchical concepts.  That 
is, their values can be grouped into several categories, 
which can be further grouped into super categories.  
The resulting categories form a hierarchy of 
activities. 

Take the attribute activity name for example.  
Suppose that there are six values: “swim”, “jog”, 
“read”, “sing”, “study” and “coding”.  Among these 
values, “swim” and “jog” belong to “exercise”; 
“read” and “sing” belong to “enjoyment”; “study” 
and “coding” belong to “work”.  Furthermore, 
“enjoyment” and “exercise” are sub-categories of  
“leisure”.  The hierarchy for “activity name” is 
illustrated in Figure 4. 

activities

work

leisure

study

coding

enjoyment

swim

sing

exercise
jog

read

 
 
Figure 4: A hierarchy for the attribute “activity name” 

A user can categorize and build up such 
hierarchies, so that activities in the same category 
have similar scheduling criteria.  For example, if a 
user prefers swimming in the afternoon, it is likely 
that he also prefers jogging in the afternoon, since 
they both belong to the “exercise” activity.  The 
hierarchy enables the agent to induce more general 
schemas in terms of categories and to make 
suggestions for a novel activity in the same category. 

 
3.3 HID3 Algorithm 

 
HID3 (hierarchical ID3) algorithm is designed 

to improve the performance of decision tree learning 
by making use of the hierarchical attributes.  
Similar to ID3, HID3 constructs the decision tree in a 
top-down fashion, i.e. from root to leaves.  At each 
node, an attribute is selected to classify instances to 
maximize the information gain.  However, when the 
chosen attribute contains hierarchical concepts, 
instances are partitioned according to the categories 
in the hierarchy, instead of their values. 

Take the hierarchy in Figure 4 as an example, if 
the attribute activity name is selected for the first 
time, the decision tree is branched according to the 
categories on the first level of the hierarchy.  That is, 
the instances are divided into the two categories: 
“work” and “leisure”.  When the attribute “activity 
name” is chosen for the second time, the decision 
tree is branched according to the categories on the 
second level of the hierarchy.  That is, instances in 

the “work” category are divided into “study” and 
“coding”, while instances in the “leisure” category 
are divided into “exercise” and “enjoyment”.  This 
process repeats till the entropy of the leaf nodes 
becomes zero or the lowest level of the hierarchy is 
reached.  Details of the HID3 algorithm are 
described below. 

 
Algorithm 1  HID3 Algorithm 
 
HID3 (S, C, A, H) 
Require: A set of instances S, a set of attributes A

describing S, a set of classification C for S, and an 
array of categories H, with H[a] denoting the current 
categories for the attribute a 

Create a node r for the tree 
if the classification for all instances in S is the same then 
 Return r with that classification 
end if 
if A is empty then 
 Return r with the most common classification for 

the instances in S 
end if 
Choose an attribute a from A, that best classifies S 
Assign a to the test for r  
if a has hierarchical concepts then 
 Let V be the set of sub-categories of H[a] 
else 
 Let V be the set of possible values of a 
end if 
for each Vv i ∈  

Add a new tree branch below r, corresponding to the 
test iva =  

Let be the subset of S that have value for a 
ivS iv

if  is empty then 
ivS

 Add a leaf node with the most common 
classification for the instances in  

ivS
else 

    if a has hierarchical concepts then 
if is on the lowest level of the hierarchy 

of a then 
iv

     Add the sub-tree HID3( , C, A-{a}, H)
ivS

       else 
     H[a]= v  i

     Add the sub-tree HID3( , C, A, H)

   end if 
ivS

    else 
     Add the sub-tree HID3( , C, A-{a}, H)

ivS
    end if 

end if 
end for 
Return r 

 
HID3 has a learning bias: to classify instances 

with the highest level of categories in the hierarchies.  



That is, it tends to generate schemas in terms of more 
general categories.  Therefore, it is able to improve 
the generalization ability of the learned schemas. 

The difference of HID3 and ID3 can be 
explained from the viewpoint of hypothesis space.  
When the activity name attribute is selected as the 
classifier, ID3 hypothesizes that “activities with the 
same name have the same scheduling criteria”, while 
HID3 starts by hypothesizing that “activities in the 
same category on the first level of the hierarchy have 
the same scheduling criteria”.  If the scheduling 
criteria are different within the same category, the 
hypothesis of HID3 shrinks and becomes “all 
activities in the same category on the second level of 
the hierarchy have the same scheduling criteria”.  If 
the scheduling criteria remain different within the 
category, the hypothesis will keep shrinking and 
finally become “activities with the same name has 
the same scheduling criteria”, which is exactly the 
hypothesis of ID3.  In other words, HID3 explores 
more general hypotheses before reaching the 
hypothesis induced by ID3. 

The complexity, in both space and time, of HID 
is greater than that of ID3.  Furthermore, given that 
decision tree learning performs greedy search 
without backtracking, the bias of HID3 may result in 
learning schemas with lower accuracy.  The 
experiment reported in Section 6.1 compares the 
performance of the two learning algorithms, and 
examines if HID3 is able to make better predictions 
when the scheduling criteria involving more 
hierarchical concepts. 
 

4. Updating Schemas 
 

The user's scheduling criteria may change over 
time.  After schemas are learned, the agent should 
also keep track of subsequent changes by updating 
the learned schemas. 

To this end, the agent keeps a restriction (or 
preference) value for each schema.  The restriction 
value r is a real number such that 

 
(1) r = 1 if the schema indicates that the 

execution time is allowed. 
(2) r = -1 if the schema indicates that the 

execution time is forbidden. 
 

On the other hand, the preference value p is any 
integer from the set {-2, -1, 0, 1, 2}, indicating that 
the preference is {highly preferred, preferred, normal, 
disliked, highly disliked} respectively. 

The agent captures the changes by continuously 
updating the restriction and preference values of each 
schema.  Given a restriction schema rσ , the 

restriction value r of rσ  is updated iteratively each 
time when the user modifies the restriction, which is 
suggested according to rσ : 

R×α

P×α

p

oldnew rr ×−+= )1( α  
where α is learning rate in [0,1], and R is in {1, -1} 
to indicate if the restriction is {allowed, forbidden} 
after the user's modification. 

Similarly, the function for updating preference 
value p is:  

oldnew pp ×−+= )1( α  
where P is in {-2, -1, 0, 1, 2} to indicate that the 
preference is {highly preferred, preferred, normal, 
disliked, highly disliked} after the user's 
modification. 

By updating the restriction and preference 
values, the agent is able to adapt itself to the changes, 
and make updated suggestions for the user's 
scheduling criteria. 
 

5. Verifying Schemas 
 
Research in cognitive psychology shows the 

labile nature of human's preferences.  Preferences 
specified by a person may be inconsistent: one may 
prefer an alternative A to B, prefer B to C, but prefer 
C to A (“intransitivity of preferences” [4]).  Even if 
the preference is consistent, when it is represented in 
terms of numerical values, these values may be 
asymmetrical.  For example, one may rate the 
alternative A as value “2”, when the alternative B is 
taken as the standard (whose value is “0”).  On the 
other hand, when the alternative A is taken as the 
standard, B may not be rated as “-2”, but “-3” or “-1” 
(“asymmetry in preferences” [5]).  Therefore, 
modeling preferences by user-input values is 
straightforward, but may not be able to reflect the 
preferences accurately.  There may be inconsistency 
between the user's scheduling criteria and scheduling 
behavior.  For example, the user may consider a 
time interval highly disliked, but always schedule 
activities in it, even though other time intervals are 
available. 

Since schemas are induced from the scheduling 
criteria specified by the user, the agent has to verify 
the schemas by keeping track of the user's scheduling 
behavior (i.e., the actual calendar).  The basic idea 
is to calculate the frequency of violation of a 
preference schema.  If the frequency is too high, the 
agent suggests the user to ignore the preference. 

Given a preference schema pσ , the violation 

frequency v of pσ is updated each time when the 

activity defined in σ is scheduled: 



oldnew vVv ×−+×= )1( αα  
where α is learning rate, and V is a Boolean value 
to indicate if pσ is violated in the actual calendar. 

With this mechanism, the agent is able to help 
the user clarify what he/she really wants and learn 
the user's scheduling criteria with better accuracy. 
 

6. Experiments 
 
6.1 Experiments for Learning Schemas 
 

The training instances in the experiments are 
generated semi-automatically.  We collected two 
users' daily activities, relevant scheduling criteria, as 
well as the hierarchies for activity name and location.  
The users have a total of 20 and 30 scheduling 
criteria, respectively.  We selected 25 activities for 
learning time interval restrictions and preferences; 
and 15 activities for learning precedence and time 
margin restrictions and preferences. 

The training instances are generated according 
to these schemas and activities.  Noise is added into 
the training instances randomly.  The number of 
training instances needed is calculated according to 
learning theory to get PAC (probably approximately 
correct) results [6].  There are 196 instances for 
time interval restrictions; 1583 for time interval 
preferences; 425 for precedence and time margin 
restrictions; and 3640 for precedence and time 
margin preferences. 

We experiment both ID3 and HID3 in inducing 
decision trees.  Training instances are divided into 
five groups, and the learned schemas are evaluated 
by cross-validation. 

The experimental results show that the user's 
scheduling criteria can be learned by using decision 
trees.  The accuracy is shown in Tables 1 and 2. 

 
 

User A User B Accuracy (%) 
training/testing HID3 ID3 HID3 ID3 
Time interval 98.5/85.7 98.5/82.7 99.6/91.8 99.6/89.7
Precedence 99.6/98.2 99.6/98.8 99.4/99.4 99.4/99.4

Time margin 100/97.3 100/96.8 99.3/91.8 99.3/87.1

Table 1: The accuracy of learning restriction schemas 
 
 

User A User B Accuracy (%) 
training/testing HID3 ID3 HID3 ID3 
Time interval 99.4/93.2 99.4/88.4 99.4/98.9 99.4/97.6
Precedence 100/91.7 100/90.5 100/94.4 100/80.9

Time margin 99.9/90.5 99.9/90.4 99.9/96.9 99.9/97.1

Table 2: The accuracy of learning preference schemas 
 
 

The two algorithms, HID3 and ID3, perform the 
same in the training set.  In the testing set, HID3 
has better accuracy then ID3 if there are more 
hierarchical concepts in the instances (e.g., User A's 
time interval preferences; User B's time margin 
restrictions and precedence preferences); the two 
algorithms have similar performance if the schemas 
contain few hierarchical concepts.  This result 
shows that using HID3 instead of ID3 will not 
degrade the performance even if there are few 
hierarchical concepts in the key schemas. 

Consider the computation time of the two 
algorithms.  HID3 needs more time than ID3, but 
the difference is less than 30%. 

In summary, HID3 matches the performance of 
ID3 with a slight computational overhead. On the 
other hand, HID3 induces more general schemas and 
makes better predictions when the learning target 
contains hierarchical concepts. 

 
6.2 Experiments for Updating Schemas 
 

We randomly generated 1500 schemas for 
restriction and preference respectively, and simulate 
the user's changes by modifying each schema 
arbitrarily. 

The results show that changes of restrictions 
and preferences can be captured by updating the 
restriction value (and preference value) of schemas.   
On average, it takes about 2 to 5 iterations to keep up 
with changes in restrictions; and 3 to 6 iterations to 
keep up with changes in preferences. 
 

7. Related Work and Conclusion 
 

There are two pieces of important research in 
this problem domain.  One is CAP (Calendar 
APprentice) by Mitchell et al [7], and the other is the 
learning interface agent by Maes [8, 9].  Both of 
them are learning agents that help people in calendar 
scheduling. 

The CAP agent observes the user's scheduling 
behavior, and helps the user by suggesting meeting 
parameters (e.g., location, duration, date, time).  
These suggestions are based on some rules induced 
by decision trees from the meetings scheduled by the 
user earlier. 

Maes's learning interface agent learns from the 
user's behavior by memory-based learning, and 
predicts the user's action in a particular situation.   
The agent may suggest an action to the user (e.g., to 
accept an invitation, to reschedule a meeting) by 
comparing current situation against previous 
experience. 



Both of them focus on learning and predicting 
the execution time of the user’s activities.  However, 
suggesting execution time per se is hardly 
meaningful, especially when the activity involves 
other participants and/or resources.  The user 
cannot determine the execution time without 
considering external factors of scheduling (e.g., the 
preferences of other participants, the schedule of 
required resources).  Therefore, the execution time 
becomes undecided and unpredictable for any single 
user, let alone the agent. 

It is also problematic to learn from execution 
time.  The execution time is a compromise between 
the user's preferences and other external factors.  
The user may violate the personal preferences in 
order to give way to the scheduling criteria of other 
participants or resources.  However, the user may 
maintain the same preferences the next time around 
and will arrange activities in the preferred time 
without conflicts from external factors.  In other 
words, “execution time” is not necessarily the 
“preferred time”.  As a result, learning from 
execution time does not always reflect the actual 
preferences of the user. 

The other problem is, it is too specific to induce 
preferences from execution time.  For example, the 
user prefers “meeting with John in the afternoon”.  
Suppose the meetings happened to be scheduled on 
Wed. afternoon for several times.  The agent 
observes the calendar and concludes: “the user 
prefers Wed. afternoon”.  Actually, the user has no 
preference for Wed. over other days.  By observing 
the calendar only, it is impossible and unreasonable 
for the agent to generalize from “prefer Wed. 
afternoon” to “prefer afternoon”.  In other words, 
the execution time for meetings is too specific to 
learn, and the learned result is only a small part of 
the user's preference.  The agent cannot get the 
whole picture of the user's preferences, until all kinds 
of meetings were scheduled in every possible time 
slot at least once.  That is to say, the agent is not 
able to predict the restrictions and preferences for a 
novel <meeting, execution time> pair, due to the lack 
of generalization ability. 

Instead of execution time, the proposed personal 
calendar agent learns to predict scheduling criteria.  
When the user wants to arrange an activity involving 
external factors, it is more plausible for the agent to 
suggest scheduling criteria.  Such criteria need to be 
exchanged with the other participants.  An activity 
is then scheduled based on the scheduling criteria of 
all participants and resources. 

It is also easier to learn from scheduling criteria 
than execution time.  The user writes scheduling 
criteria for activities, and the agent induces schemas 

of the scheduling criteria.  Because of the 
generalization power of learning, the agent is able to 
suggest scheduling criteria for previously seen 
activities as well as for novel activities.  Since the 
agent also keeps track of the actual calendar and 
calculates the violation frequency of each schema, it 
can not only repeat the user's scheduling criteria, but 
also suggest useful modifications proactively. 

This paper has presented an agent to learn a 
user's scheduling criteria.  The experimental 
evidence shows that the agent can learn a user's 
scheduling criteria with high accuracy, and keep up 
with subsequent changes effectively.  Such a 
learning agent can work with other calendar 
scheduling software to automate the scheduling 
process and to improve the quality of the resulting 
schedule. 
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