
Learning User's Scheduling Criteria in
a Personal Calendar Agent!

Shih-jui Lin and Jane Yung-jen Hsu

Department of Computer Science and Information Engineering
National Taiwan University

1 Sec 4 Roosevelt Road, Taipei, 106
(02) 2363-5336 x 120

{sjlin, yjhsu}@agents.csie.ntu.edu.tw}

! This research was sponsored in part by ROC National Science Council under grant No. NSC-88-2213-E-002-007.

Abstract

Calendar scheduling is a necessary but tedious
job in daily life. Even with the help of scheduling
software, a user has to specify his/her personal
scheduling criteria repeatedly in each delegation.
This paper presents a software agent that learns a
user's scheduling patterns from past experience, and
suggests relevant scheduling criteria when the user
wants to arrange a new activity. New schemas of
scheduling criteria are induced using decision trees.
To improve the agent’s learning performance, an
enhanced decision tree algorithm, HID3, is proposed.
Moreover, the agent observes the calendar of a user
to identify inconsistency between his actual behavior
and scheduling criteria. The agent can alert user of
such inconsistency and suggest updates to his
scheduling criteria. Experimental data show that
the proposed personal calendar agent can not only
learn a user's scheduling criteria with high accuracy,
but also keep up with subsequent changes.

1. Introduction

Calendar scheduling is a necessary but tedious
job in daily life. When scheduling an activity, one
must consider personal restrictions and preferences
as well as external factors such as the schedules of
the other participants, and any required resources.
There have been software developed to help people
manage their calendars and schedule their daily
activities. For example, Haynes et al. [1] proposed
a community of distributed software agents that can
communicate with each other by e-mail, and
schedule meetings on behalf of their users using a
negotiation mechanism. A user simply specifies the
criteria of the meeting to be scheduled, then the
agents find a time acceptable to all the participants.

While such agents help automate the task of
scheduling, a user needs to specify his scheduling
criteria explicitly each time he delegates the task to
the agents. To further automate the scheduling

process, we designed a personal calendar agent that
relieves the user of repeated delegation by suggesting
scheduling criteria learned from past experience [2].

In what follows, Section 2 first formulates the
problem of calendar scheduling in terms of
restrictions and preferences, and Section 3 describes
the proposed learning approach. The mechanisms
for updating and verifying the learned results are
presented in Sections 4 and 5. The experimental
results are summarized in Section 6, followed by a
discussion of related work and the conclusion.

2. Problem Formulation

When a user delegates her agent to schedule her
calendar, she has to specify the set of activities
together with all relevant scheduling criteria initially.
Each activity is specified by five attributes: activity
name, participants, location, required resources, and
activity duration. The goal of a personal calendar
agent is to find the best time to schedule each activity
by learning the general patterns of a user's
scheduling criteria and reusing them in future
delegations.

Each scheduling criterion is either a restriction
or a preference. The former defines constraints that
must hold in the user’s calendar, while the latter
indicates choices among alternative schedules.
There are three kinds of restrictions as follows.

(1) Time interval restriction constrains the time
for a single activity. For example, taking
MRT can not be scheduled at 2 a.m. since the
trains are not in service after midnight.

(2) Precedence restriction constrains the ordering
of two activities. For example, one must get
a passport before traveling abroad.

(3) Time margin restriction constrains the time
margin between two activities. For example,
the time margin between two meetings must
be greater than the travel time between the
two meeting places.

Similarly, there are three types of preferences.
(1) Time interval preference models the user's

mailto:yjhsu}@agents.csie.ntu.edu.tw

preference for the execution time of a single
activity, e.g. preferring working in the
morning to at night.

(2) Precedence preference models the execution
priority of two activities, e.g. doing
homework before playing a game.

(3) Time margin preference indicates preferred
time margin between two activities, e.g.
arriving at the airport at least one hour before
the flight’s scheduled departure.

Unlike restrictions, preferences may be violated.

For example, suppose that a user prefers “meeting in
the afternoon”. It is acceptable, while not ideal, to
schedule a meeting in the morning in order to
accommodate all meeting participants.

The personal calendar agent induces the general
patterns of a user's scheduling criteria, which are
used as suggestions in scheduling new activities. The
learned general patterns are represented as schemas.
A schema describes the conditions of the activities
associated with a specific restriction or preference.
For example, given a preference schema “dislike
meeting with John in the morning”, the agent will
suggest “dislike morning” for all meeting in which
John participates. When the user wants to arrange a
new activity, the agent suggests relevant scheduling
criteria according to the learned schemas.

3. Learning Schemas

3.1 Decision Trees

We use a machine learning approach, decision
tree, to induce schemas. The schemas for the six
kinds of scheduling criteria are learned respectively.

The input to a decision tree is an instance,
which is described by a set of attributes; the output
of the tree is a classification for that instance. Each
node in the tree specifies a test of some attribute of
the instance, and each branch descending from that
node corresponds to one of the possible values for
this attribute [3].

In the decision tree for restriction schemas, the
classification is either allowed, or forbidden; while in
the decision tree for preference schemas, the
classification can be one of the values {highly
preferred, preferred, normal, disliked, highly
disliked}. For time interval schemas (both the
restriction and preference schemas), the instances in
the decision tree are activities. For precedence and
time margin schemas, the instances are activity pairs,
as each schema is associated with two activities.

For example, the decision tree in Figure 1
represents the time interval preference with respect
to morning. Each path from the tree root to a leaf is
a schema. For instance, the rightmost path in the

tree is the schema “dislike doing entertainment
outdoors in the morning”.

activity name

duration

exercise

disliked

2 hours

normal

0.5 hour

with John?

work

preferred

No

disliked

Yes

location

entertainment

normal

indoor

disliked

outdoor

 Figure 1: A decision tree representing the time interval
preferences with respect to morning

Figure 2 shows a decision tree for precedence
restrictions. Each precedence restriction is
associated with two activities, and indicates whether
the execution order “the first activity before the
second activity” is allowed. Each path in the tree
represents a precedence restriction schema. For
example, the middle-left path means “meeting before
preparing meeting materials is forbidden”.

name of the
1st activity

coding

allowed

preparing
 meeting material

allowed
name of the
2nd activity

meeting

forbidden

preparing
meeting material

allowed

coding

Figure 2: A decision tree representing precedence restrictions

The tree in Figure 3 represents time margin

restrictions. It indicates whether it is allowed to
execute two activities with a time margin “0.5 hour”.

location of the
1st activity

location of the
2nd activity

home

forbidden

Academia Sinica

allowed

school

location of the
2nd activity

swimming pool

forbidden

home

allowed

school

Figure 3: A decision tree representing the restrictions with
respect to time margin of 0.5 hour.

3.2 Hierarchical Concepts

Two of the activity attributes, activity name and
location, may contain hierarchical concepts. That
is, their values can be grouped into several categories,
which can be further grouped into super categories.
The resulting categories form a hierarchy of
activities.

Take the attribute activity name for example.
Suppose that there are six values: “swim”, “jog”,
“read”, “sing”, “study” and “coding”. Among these
values, “swim” and “jog” belong to “exercise”;
“read” and “sing” belong to “enjoyment”; “study”
and “coding” belong to “work”. Furthermore,
“enjoyment” and “exercise” are sub-categories of
“leisure”. The hierarchy for “activity name” is
illustrated in Figure 4.

activities

work

leisure

study

coding

enjoyment

swim

sing

exercise
jog

read

Figure 4: A hierarchy for the attribute “activity name”

A user can categorize and build up such
hierarchies, so that activities in the same category
have similar scheduling criteria. For example, if a
user prefers swimming in the afternoon, it is likely
that he also prefers jogging in the afternoon, since
they both belong to the “exercise” activity. The
hierarchy enables the agent to induce more general
schemas in terms of categories and to make
suggestions for a novel activity in the same category.

3.3 HID3 Algorithm

HID3 (hierarchical ID3) algorithm is designed

to improve the performance of decision tree learning
by making use of the hierarchical attributes.
Similar to ID3, HID3 constructs the decision tree in a
top-down fashion, i.e. from root to leaves. At each
node, an attribute is selected to classify instances to
maximize the information gain. However, when the
chosen attribute contains hierarchical concepts,
instances are partitioned according to the categories
in the hierarchy, instead of their values.

Take the hierarchy in Figure 4 as an example, if
the attribute activity name is selected for the first
time, the decision tree is branched according to the
categories on the first level of the hierarchy. That is,
the instances are divided into the two categories:
“work” and “leisure”. When the attribute “activity
name” is chosen for the second time, the decision
tree is branched according to the categories on the
second level of the hierarchy. That is, instances in

the “work” category are divided into “study” and
“coding”, while instances in the “leisure” category
are divided into “exercise” and “enjoyment”. This
process repeats till the entropy of the leaf nodes
becomes zero or the lowest level of the hierarchy is
reached. Details of the HID3 algorithm are
described below.

Algorithm 1 HID3 Algorithm

HID3 (S, C, A, H)
Require: A set of instances S, a set of attributes A

describing S, a set of classification C for S, and an
array of categories H, with H[a] denoting the current
categories for the attribute a

Create a node r for the tree
if the classification for all instances in S is the same then
 Return r with that classification
end if
if A is empty then
 Return r with the most common classification for

the instances in S
end if
Choose an attribute a from A, that best classifies S
Assign a to the test for r
if a has hierarchical concepts then
 Let V be the set of sub-categories of H[a]
else
 Let V be the set of possible values of a
end if
for each Vv i ∈

Add a new tree branch below r, corresponding to the
test iva =

Let be the subset of S that have value for a
ivS iv

if is empty then
ivS

 Add a leaf node with the most common
classification for the instances in

ivS
else

 if a has hierarchical concepts then
if is on the lowest level of the hierarchy

of a then
iv

 Add the sub-tree HID3(, C, A-{a}, H)
ivS

 else
 H[a]= v i

 Add the sub-tree HID3(, C, A, H)

 end if
ivS

 else
 Add the sub-tree HID3(, C, A-{a}, H)

ivS
 end if

end if
end for
Return r

HID3 has a learning bias: to classify instances

with the highest level of categories in the hierarchies.

That is, it tends to generate schemas in terms of more
general categories. Therefore, it is able to improve
the generalization ability of the learned schemas.

The difference of HID3 and ID3 can be
explained from the viewpoint of hypothesis space.
When the activity name attribute is selected as the
classifier, ID3 hypothesizes that “activities with the
same name have the same scheduling criteria”, while
HID3 starts by hypothesizing that “activities in the
same category on the first level of the hierarchy have
the same scheduling criteria”. If the scheduling
criteria are different within the same category, the
hypothesis of HID3 shrinks and becomes “all
activities in the same category on the second level of
the hierarchy have the same scheduling criteria”. If
the scheduling criteria remain different within the
category, the hypothesis will keep shrinking and
finally become “activities with the same name has
the same scheduling criteria”, which is exactly the
hypothesis of ID3. In other words, HID3 explores
more general hypotheses before reaching the
hypothesis induced by ID3.

The complexity, in both space and time, of HID
is greater than that of ID3. Furthermore, given that
decision tree learning performs greedy search
without backtracking, the bias of HID3 may result in
learning schemas with lower accuracy. The
experiment reported in Section 6.1 compares the
performance of the two learning algorithms, and
examines if HID3 is able to make better predictions
when the scheduling criteria involving more
hierarchical concepts.

4. Updating Schemas

The user's scheduling criteria may change over
time. After schemas are learned, the agent should
also keep track of subsequent changes by updating
the learned schemas.

To this end, the agent keeps a restriction (or
preference) value for each schema. The restriction
value r is a real number such that

(1) r = 1 if the schema indicates that the

execution time is allowed.
(2) r = -1 if the schema indicates that the

execution time is forbidden.

On the other hand, the preference value p is any
integer from the set {-2, -1, 0, 1, 2}, indicating that
the preference is {highly preferred, preferred, normal,
disliked, highly disliked} respectively.

The agent captures the changes by continuously
updating the restriction and preference values of each
schema. Given a restriction schema rσ , the

restriction value r of rσ is updated iteratively each
time when the user modifies the restriction, which is
suggested according to rσ :

R×α

P×α

p

oldnew rr ×−+=)1(α
where α is learning rate in [0,1], and R is in {1, -1}
to indicate if the restriction is {allowed, forbidden}
after the user's modification.

Similarly, the function for updating preference
value p is:

oldnew pp ×−+=)1(α
where P is in {-2, -1, 0, 1, 2} to indicate that the
preference is {highly preferred, preferred, normal,
disliked, highly disliked} after the user's
modification.

By updating the restriction and preference
values, the agent is able to adapt itself to the changes,
and make updated suggestions for the user's
scheduling criteria.

5. Verifying Schemas

Research in cognitive psychology shows the

labile nature of human's preferences. Preferences
specified by a person may be inconsistent: one may
prefer an alternative A to B, prefer B to C, but prefer
C to A (“intransitivity of preferences” [4]). Even if
the preference is consistent, when it is represented in
terms of numerical values, these values may be
asymmetrical. For example, one may rate the
alternative A as value “2”, when the alternative B is
taken as the standard (whose value is “0”). On the
other hand, when the alternative A is taken as the
standard, B may not be rated as “-2”, but “-3” or “-1”
(“asymmetry in preferences” [5]). Therefore,
modeling preferences by user-input values is
straightforward, but may not be able to reflect the
preferences accurately. There may be inconsistency
between the user's scheduling criteria and scheduling
behavior. For example, the user may consider a
time interval highly disliked, but always schedule
activities in it, even though other time intervals are
available.

Since schemas are induced from the scheduling
criteria specified by the user, the agent has to verify
the schemas by keeping track of the user's scheduling
behavior (i.e., the actual calendar). The basic idea
is to calculate the frequency of violation of a
preference schema. If the frequency is too high, the
agent suggests the user to ignore the preference.

Given a preference schema pσ , the violation

frequency v of pσ is updated each time when the

activity defined in σ is scheduled:

oldnew vVv ×−+×=)1(αα
where α is learning rate, and V is a Boolean value
to indicate if pσ is violated in the actual calendar.

With this mechanism, the agent is able to help
the user clarify what he/she really wants and learn
the user's scheduling criteria with better accuracy.

6. Experiments

6.1 Experiments for Learning Schemas

The training instances in the experiments are
generated semi-automatically. We collected two
users' daily activities, relevant scheduling criteria, as
well as the hierarchies for activity name and location.
The users have a total of 20 and 30 scheduling
criteria, respectively. We selected 25 activities for
learning time interval restrictions and preferences;
and 15 activities for learning precedence and time
margin restrictions and preferences.

The training instances are generated according
to these schemas and activities. Noise is added into
the training instances randomly. The number of
training instances needed is calculated according to
learning theory to get PAC (probably approximately
correct) results [6]. There are 196 instances for
time interval restrictions; 1583 for time interval
preferences; 425 for precedence and time margin
restrictions; and 3640 for precedence and time
margin preferences.

We experiment both ID3 and HID3 in inducing
decision trees. Training instances are divided into
five groups, and the learned schemas are evaluated
by cross-validation.

The experimental results show that the user's
scheduling criteria can be learned by using decision
trees. The accuracy is shown in Tables 1 and 2.

User A User B Accuracy (%)
training/testing HID3 ID3 HID3 ID3
Time interval 98.5/85.7 98.5/82.7 99.6/91.8 99.6/89.7
Precedence 99.6/98.2 99.6/98.8 99.4/99.4 99.4/99.4

Time margin 100/97.3 100/96.8 99.3/91.8 99.3/87.1

Table 1: The accuracy of learning restriction schemas

User A User B Accuracy (%)
training/testing HID3 ID3 HID3 ID3
Time interval 99.4/93.2 99.4/88.4 99.4/98.9 99.4/97.6
Precedence 100/91.7 100/90.5 100/94.4 100/80.9

Time margin 99.9/90.5 99.9/90.4 99.9/96.9 99.9/97.1

Table 2: The accuracy of learning preference schemas

The two algorithms, HID3 and ID3, perform the
same in the training set. In the testing set, HID3
has better accuracy then ID3 if there are more
hierarchical concepts in the instances (e.g., User A's
time interval preferences; User B's time margin
restrictions and precedence preferences); the two
algorithms have similar performance if the schemas
contain few hierarchical concepts. This result
shows that using HID3 instead of ID3 will not
degrade the performance even if there are few
hierarchical concepts in the key schemas.

Consider the computation time of the two
algorithms. HID3 needs more time than ID3, but
the difference is less than 30%.

In summary, HID3 matches the performance of
ID3 with a slight computational overhead. On the
other hand, HID3 induces more general schemas and
makes better predictions when the learning target
contains hierarchical concepts.

6.2 Experiments for Updating Schemas

We randomly generated 1500 schemas for
restriction and preference respectively, and simulate
the user's changes by modifying each schema
arbitrarily.

The results show that changes of restrictions
and preferences can be captured by updating the
restriction value (and preference value) of schemas.
On average, it takes about 2 to 5 iterations to keep up
with changes in restrictions; and 3 to 6 iterations to
keep up with changes in preferences.

7. Related Work and Conclusion

There are two pieces of important research in
this problem domain. One is CAP (Calendar
APprentice) by Mitchell et al [7], and the other is the
learning interface agent by Maes [8, 9]. Both of
them are learning agents that help people in calendar
scheduling.

The CAP agent observes the user's scheduling
behavior, and helps the user by suggesting meeting
parameters (e.g., location, duration, date, time).
These suggestions are based on some rules induced
by decision trees from the meetings scheduled by the
user earlier.

Maes's learning interface agent learns from the
user's behavior by memory-based learning, and
predicts the user's action in a particular situation.
The agent may suggest an action to the user (e.g., to
accept an invitation, to reschedule a meeting) by
comparing current situation against previous
experience.

Both of them focus on learning and predicting
the execution time of the user’s activities. However,
suggesting execution time per se is hardly
meaningful, especially when the activity involves
other participants and/or resources. The user
cannot determine the execution time without
considering external factors of scheduling (e.g., the
preferences of other participants, the schedule of
required resources). Therefore, the execution time
becomes undecided and unpredictable for any single
user, let alone the agent.

It is also problematic to learn from execution
time. The execution time is a compromise between
the user's preferences and other external factors.
The user may violate the personal preferences in
order to give way to the scheduling criteria of other
participants or resources. However, the user may
maintain the same preferences the next time around
and will arrange activities in the preferred time
without conflicts from external factors. In other
words, “execution time” is not necessarily the
“preferred time”. As a result, learning from
execution time does not always reflect the actual
preferences of the user.

The other problem is, it is too specific to induce
preferences from execution time. For example, the
user prefers “meeting with John in the afternoon”.
Suppose the meetings happened to be scheduled on
Wed. afternoon for several times. The agent
observes the calendar and concludes: “the user
prefers Wed. afternoon”. Actually, the user has no
preference for Wed. over other days. By observing
the calendar only, it is impossible and unreasonable
for the agent to generalize from “prefer Wed.
afternoon” to “prefer afternoon”. In other words,
the execution time for meetings is too specific to
learn, and the learned result is only a small part of
the user's preference. The agent cannot get the
whole picture of the user's preferences, until all kinds
of meetings were scheduled in every possible time
slot at least once. That is to say, the agent is not
able to predict the restrictions and preferences for a
novel <meeting, execution time> pair, due to the lack
of generalization ability.

Instead of execution time, the proposed personal
calendar agent learns to predict scheduling criteria.
When the user wants to arrange an activity involving
external factors, it is more plausible for the agent to
suggest scheduling criteria. Such criteria need to be
exchanged with the other participants. An activity
is then scheduled based on the scheduling criteria of
all participants and resources.

It is also easier to learn from scheduling criteria
than execution time. The user writes scheduling
criteria for activities, and the agent induces schemas

of the scheduling criteria. Because of the
generalization power of learning, the agent is able to
suggest scheduling criteria for previously seen
activities as well as for novel activities. Since the
agent also keeps track of the actual calendar and
calculates the violation frequency of each schema, it
can not only repeat the user's scheduling criteria, but
also suggest useful modifications proactively.

This paper has presented an agent to learn a
user's scheduling criteria. The experimental
evidence shows that the agent can learn a user's
scheduling criteria with high accuracy, and keep up
with subsequent changes effectively. Such a
learning agent can work with other calendar
scheduling software to automate the scheduling
process and to improve the quality of the resulting
schedule.

References

[1] T. Haynes, S. Sen, N. Arora, and R. Nadella. An
automated meeting scheduling system that utilizes
user preferences. In Proceedings of Agents ’97
Conference, 1997.

[2] S. J. Lin. Learning restrictions and preferences
in a personal agent for calendar scheduling.
Master’s thesis, National Taiwan University,
Taipei, Taiwan, 2000.

[3] T. Mitchell. Machine Learning, chapter 3. New
York: McGraw-Hill, 1997.

[4] A. Tversky. Intransitivity of preferences.
Psychological Review, 76:31-48, 1969.

[5] P. D. Tyson. Do your standards make any
difference? Asymmetry in reference judgments.
Perceptual and Motor Skills, 63:1059-1066, 1986.

[6] S. J. Russell. Artificial intelligence: A modern
approach, chapter 18. London: Prentice Hall
International, 1995.

[7] T. Mitchell, R. Caruana, D. Freitag, J. McDermott,
and D. Zabowski. Experience with learning
personal assistant. Communications of the ACM,
37:81-91, 1994.

[8] P. Maes and R. Kozierok. Agents that reduce
work and information overload. Communications
of the ACM, 37:31-40, 1994.

[9] R. Kozierok and P. Maes. A learning interface
agent for scheduling meetings. In Proceedings
of Intelligent User Interfaces ’93, 1993.

	User A
	User B
	User A
	User B

