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An Introduction to Multiagent Systems
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Lecture 2 An Introduction to Multiagent Systems

1 What is an Agent?

� The main point about agents is they are autonomous: capable of
acting independently, exhibiting control over their internal state.� Thus: an agent is a computer system capable of autonomous
action in some environment.

ENVIRONMENT

SYSTEM

outputinput
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� Trivial (non-interesting) agents:

– thermostat;

– UNIX daemon (e.g., biff).
� An intelligent agent is a computer system capable of flexible

autonomous action in some environment.

By flexible, we mean:

– reactive;

– pro-active;

– social.
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1.1 Reactivity
� If a program’s environment is guaranteed to be fixed, the

program need never worry about its own success or failure —
program just executes blindly.

Example of fixed environment: compiler.� The real world is not like that: things change, information is
incomplete. Many (most?) interesting environments are dynamic.� Software is hard to build for dynamic domains: program must
take into account possibility of failure — ask itself whether it is
worth executing!� A reactive system is one that maintains an ongoing interaction
with its environment, and responds to changes that occur in it (in
time for the response to be useful).
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1.2 Proactiveness

� Reacting to an environment is easy (e.g., stimulus � response
rules).� But we generally want agents to do things for us.� Hence goal directed behaviour.� Pro-activeness = generating and attempting to achieve goals; not
driven solely by events; taking the initiative.� Recognising opportunities.
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1.3 Social Ability

� The real world is a multi-agent environment: we cannot go
around attempting to achieve goals without taking others into
account.� Some goals can only be achieved with the cooperation of others.� Similarly for many computer environments: witness the
INTERNET.� Social ability in agents is the ability to interact with other agents
(and possibly humans) via some kind of agent-communication
language, and perhaps cooperate with others.
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2 Other Properties

� Other properties, sometimes discussed in the context of agency:

– mobility: the ability of an agent to move around an electronic
network;

– veracity: an agent will not knowingly communicate false
information;

– benevolence: agents do not have conflicting goals, and that
every agent will therefore always try to do what is asked of it;

– rationality: agent will act in order to achieve its goals, and will
not act in such a way as to prevent its goals being achieved —
at least insofar as its beliefs permit;

– learning/adaption: agents improve performance over time.
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2.1 Agents and Objects

� Are agents just objects by another name?� Object:

– encapsulates some state;

– communicates via message passing;

– has methods, corresponding to operations that may be
performed on this state.
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� Main differences:

– agents are autonomous:
agents embody stronger notion of autonomy than objects, and
in particular, they decide for themselves whether or not to
perform an action on request from another agent;

– agents are smart:
capable of flexible (reactive, pro-active, social) behavior, and
the standard object model has nothing to say about such
types of behavior;

– agents are active:
a multi-agent system is inherently multi-threaded, in that each
agent is assumed to have at least one thread of active control.
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Objects do it for free. . .

� agents do it because they want to;� agents do it for money.
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2.2 Agents and Expert Systems

� Aren’t agents just expert systems by another name?� Expert systems typically disembodied ‘expertise’ about some
(abstract) domain of discourse (e.g., blood diseases).� Example: MYCIN knows about blood diseases in humans.

It has a wealth of knowledge about blood diseases, in the form of
rules.

A doctor can obtain expert advice about blood diseases by giving
MYCIN facts, answering questions, and posing queries.
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� Main differences:

– agents situated in an environment:
MYCIN is not aware of the world — only information obtained
is by asking the user questions.

– agents act:
MYCIN does not operate on patients.

� Some real-time (typically process control) expert systems are
agents.
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2.3 Intelligent Agents and AI

� Aren’t agents just the AI project?

Isn’t building an agent what AI is all about?� AI aims to build systems that can (ultimately) understand natural
language, recognise and understand scenes, use common
sense, think creatively, etc — all of which are very hard.� So, don’t we need to solve all of AI to build an agent. . . ?
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� When building an agent, we simply want a system that can
choose the right action to perform, typically in a limited domain.� We do not have to solve all the problems of AI to build a useful
agent:

a little intelligence goes a long way!

� Oren Etzioni, speaking about the commercial experience of
NETBOT, Inc:

We made our agents dumber and dumber and dumber
. . . until finally they made money.
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3 Environments

� Accessible vs inaccessible.

An accessible environment is one in which the agent can obtain
complete, accurate, up-to-date information about the
environment’s state.

Most moderately complex environments (including, for example,
the everyday physical world and the Internet) are inaccessible.

The more accessible an environment is, the simpler it is to build
agents to operate in it.
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� Deterministic vs non-deterministic.

As we have already mentioned, a deterministic environment is
one in which any action has a single guaranteed effect — there
is no uncertainty about the state that will result from performing
an action.

The physical world can to all intents and purposes be regarded
as non-deterministic.

Non-deterministic environments present greater problems for the
agent designer.
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� Episodic vs non-episodic.

In an episodic environment, the performance of an agent is
dependent on a number of discrete episodes, with no link
between the performance of an agent in different scenarios.

Episodic environments are simpler from the agent developer’s
perspective because the agent can decide what action to
perform based only on the current episode — it need not reason
about the interactions between this and future episodes.
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� Static vs dynamic.

A static environment is one that can be assumed to remain
unchanged except by the performance of actions by the agent.

A dynamic environment is one that has other processes
operating on it, and which hence changes in ways beyond the
agent’s control.

The physical world is a highly dynamic environment.
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� Discrete vs continuous.

An environment is discrete if there are a fixed, finite number of
actions and percepts in it. Russell and Norvig give a chess game
as an example of a discrete environment, and taxi driving as an
example of a continuous one.
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4 Agents as Intentional Systems
� When explaining human activity, it is often useful to make

statements such as the following:

Janine took her umbrella because she
believed it was going to rain.

Michael worked hard because he
wanted to possess a PhD.

� These statements make use of a folk psychology, by which
human behaviour is predicted and explained through the
attribution of attitudes, such as believing and wanting (as in the
above examples), hoping, fearing, and so on.� The attitudes employed in such folk psychological descriptions
are called the intentional notions.
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� The philosopher Daniel Dennett coined the term intentional
system to describe entities ‘whose behaviour can be predicted
by the method of attributing belief, desires and rational acumen’.� Dennett identifies different ‘grades’ of intentional system:

‘A first-order intentional system has beliefs and desires
(etc.) but no beliefs and desires about beliefs and desires.
. . . A second-order intentional system is more
sophisticated; it has beliefs and desires (and no doubt
other intentional states) about beliefs and desires (and
other intentional states) — both those of others and its
own’.

� Is it legitimate or useful to attribute beliefs, desires, and so on, to
computer systems?
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� McCarthy argued that there are occasions when the intentional
stance is appropriate:

‘To ascribe beliefs, free will, intentions, consciousness, abilities, or wants to a

machine is legitimate when such an ascription expresses the same information
about the machine that it expresses about a person. It is useful when the

ascription helps us understand the structure of the machine, its past or future

behaviour, or how to repair or improve it. It is perhaps never logically required
even for humans, but expressing reasonably briefly what is actually known about

the state of the machine in a particular situation may require mental qualities or
qualities isomorphic to them. Theories of belief, knowledge and wanting can be

constructed for machines in a simpler setting than for humans, and later applied
to humans. Ascription of mental qualities is most straightforward for machines of

known structure such as thermostats and computer operating systems, but is
most useful when applied to entities whose structure is incompletely known’.

http:// www.csc.l iv.ac.uk/ ˜mjw/pubs /imas/ 21



Lecture 2 An Introduction to Multiagent Systems

� What objects can be described by the intentional stance?� As it turns out, more or less anything can. . . consider a light
switch:

‘It is perfectly coherent to treat a light switch as a (very
cooperative) agent with the capability of transmitting
current at will, who invariably transmits current when it
believes that we want it transmitted and not otherwise;
flicking the switch is simply our way of communicating our
desires’. (Yoav Shoham)

� But most adults would find such a description absurd!

Why is this?
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� The answer seems to be that while the intentional stance
description is consistent,

. . . it does not buy us anything, since we essentially
understand the mechanism sufficiently to have a simpler,
mechanistic description of its behaviour. (Yoav Shoham)

� Put crudely, the more we know about a system, the less we need
to rely on animistic, intentional explanations of its behaviour.� But with very complex systems, a mechanistic, explanation of its
behaviour may not be practicable.� As computer systems become ever more complex, we need
more powerful abstractions and metaphors to explain their
operation — low level explanations become impractical.

The intentional stance is such an abstraction.
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� The intentional notions are thus abstraction tools, which provide
us with a convenient and familiar way of describing, explaining,
and predicting the behaviour of complex systems.� Remember: most important developments in computing are
based on new abstractions:

– procedural abstraction;

– abstract data types;

– objects.

Agents, and agents as intentional systems, represent a further,
and increasingly powerful abstraction.� So agent theorists start from the (strong) view of agents as
intentional systems: one whose simplest consistent description
requires the intentional stance.
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� This intentional stance is an abstraction tool — a convenient way
of talking about complex systems, which allows us to predict and
explain their behaviour without having to understand how the
mechanism actually works.� Now, much of computer science is concerned with looking for
abstraction mechanisms (witness procedural abstraction, ADTs,
objects, . . . )

So why not use the intentional stance as an abstraction
tool in computing — to explain, understand, and, crucially,
program computer systems?

� This is an important argument in favour of agents.
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� Other 3 points in favour of this idea:

Characterising Agents

� It provides us with a familiar, non-technical way of understanding
& explaing agents.

Nested Representations

� It gives us the potential to specify systems that include
representations of other systems.

It is widely accepted that such nested representations are
essential for agents that must cooperate with other agents.
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Post-Declarative Systems� This view of agents leads to a kind of post-declarative
programming:

– in procedural programming, we say exactly what a system
should do;

– in declarative programming, we state something that we want
to achieve, give the system general info about the
relationships between objects, and let a built-in control
mechanism (e.g., goal-directed theorem proving) figure out
what to do;

– with agents, we give a very abstract specification of the
system, and let the control mechanism figure out what to do,
knowing that it will act in accordance with some built-in theory
of agency (e.g., the well-known Cohen-Levesque model of
intention).
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An aside. . .� We find that researchers from a more mainstream computing
discipline have adopted a similar set of ideas. . .� In distributed systems theory, logics of knowledge are used in
the development of knowledge based protocols.� The rationale is that when constructing protocols, one often
encounters reasoning such as the following:

IF process i knows process j has
received message m �

THEN process i should send process j
the message m � .

� In DS theory, knowledge is grounded — given a precise
interpretation in terms of the states of a process; return to this
later. . . we’ll examine this point in detail later.
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5 Abstract Architectures for Agents

� Assume the environment may be in any of a finite set E of
discrete, instantaneous states:

E � �
e � e ���
	
	
	��	

� Agents are assumed to have a repertoire of possible actions
available to them, which transform the state of the environment.

Ac � ��� � � ����	�	�	��
� A run, r, of an agent in an environment is a sequence of

interleaved environment states and actions:

r � e � ���� � e � ���� � e � ���� � e � ���� � �
��� � u � �� � eu
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� Let:

–  be the set of all such possible finite sequences (over E and
Ac);

–  Ac be the subset of these that end with an action; and

–  E be the subset of these that end with an environment state.

http:// www.csc.l iv.ac.uk/ ˜mjw/pubs /imas/ 30

Lecture 2 An Introduction to Multiagent Systems

State Transformer Functions
� A state transformer function represents behaviour of the

environment:

! �" Ac � #%$ E &
� Note that environments are. . .

– history dependent.

– non-deterministic.
� If ! $ r &'�)( , then there are no possible successor states to r. In

this case, we say that the system has ended its run.� Formally, we say an environment Env is a triple Env � * E � e � � !,+
where: E is a set of environment states, e �.- E is the initial state;
and ! is a state transformer function.
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Agents

� Agent is a function which maps runs to actions:

Ag �" E � Ac

An agent makes a decision about what action to perform based
on the history of the system that it has witnessed to date. Let /10
be the set of all agents.
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Systems

� A system is a pair containing an agent and an environment.� Any system will have associated with it a set of possible runs; we
denote the set of runs of agent Ag in environment Env by
 $ Ag � Env & .� (We assume  $ Ag � Env & contains only terminated runs.)
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� Formally, a sequence

$ e � � � � � e �2� � �2� e �3�
	
	
	4&
represents a run of an agent Ag in environment Env � * E � e � � !,+ if:

1. e � is the initial state of Env

2.
� � � Ag $ e � & ; and

3. for u 576 ,
eu - ! $8$ e � � � � ��	�	�	�� � u 9 �:&;& where�

u � Ag $8$ e ��� � ���
	
	�	�� eu &8&
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6 Purely Reactive Agents

� Some agents decide what to do without reference to their history
— they base their decision making entirely on the present, with
no reference at all to the past.� We call such agents purely reactive:

action � E � Ac

� A thermostat is a purely reactive agent.

action $ e &<�
=>>? >>@ off if e = temperature OK
on otherwise.
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7 Perception

� Now introduce perception system:

ENVIRONMENT

action

AGENT

see

http:// www.csc.l iv.ac.uk/ ˜mjw/pubs /imas/ 36

Lecture 2 An Introduction to Multiagent Systems

� The see function is the agent’s ability to observe its environment,
whereas the action function represents the agent’s decision
making process.� Output of the see function is a percept :

see � E � Per

which maps environment states to percepts, and action is now a
function

action � Per A � A

which maps sequences of percepts to actions.
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8 Agents with State

� We now consider agents that maintain state:

actionsee

next state

AGENT

ENVIRONMENT
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� These agents have some internal data structure, which is
typically used to record information about the environment state
and history.
Let I be the set of all internal states of the agent.� The perception function see for a state-based agent is
unchanged:

see � E � Per

The action-selection function action is now defined as a mapping

action � I � Ac

from internal states to actions. An additional function next is
introduced, which maps an internal state and percept to an
internal state:

next � I B Per � I
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8.1 Agent control loop

1. Agent starts in some initial internal state i � .
2. Observes its environment state e, and generates a percept

see $ e & .
3. Internal state of the agent is then updated via next function,

becoming next $ i � � see $ e &8& .
4. The action selected by the agent is action $ next $ i � � see $ e &8&8& .

This action is then performed.

5. Goto (2).
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9 Tasks for Agents

� We build agents in order to carry out tasks for us.� The task must be specified by us. . .� But we want to tell agents what to do without telling them how to
do it.
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9.1 Utilities Functions over States

� One possibility: associate utilities with individual states — the
task of the agent is then to bring about states that maximise
utility.� A task specification is a function

u � E � IR

which associated a real number with every environment state.
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� But what is the value of a run. . .

– minimum utility of state on run?

– maximum utility of state on run?

– sum of utilities of states on run?

– average?� Disadvantage: difficult to specify a long term view when
assigning utilities to individual states.

(One possibility: a discount for states later on.)
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9.2 Utilities over Runs
� Another possibility: assigns a utility not to individual states, but to

runs themselves:

u �� � IR

� Such an approach takes an inherently long term view.� Other variations: incorporate probabilities of different states
emerging.� Difficulties with utility-based approaches:

– where do the numbers come from?

– we don’t think in terms of utilities!

– hard to formulate tasks in these terms.
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Utility in the Tileworld
� Simulated two dimensional grid environment on which there are

agents, tiles, obstacles, and holes.� An agent can move in four directions, up, down, left, or right, and
if it is located next to a tile, it can push it.� Holes have to be filled up with tiles by the agent. An agent
scores points by filling holes with tiles, with the aim being to fill as
many holes as possible.�
TILEWORLD changes with the random appearance and
disappearance of holes.� Utility function defined as follows:

u $ r &DC� number of holes filled in r
number of holes that appeared in r
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9.3 Expected Utility & Optimal Agents

� Write P $ r E Ag � Env & to denote probability that run r occurs when
agent Ag is placed in environment Env.

Note:

F
r G�H'I Ag J Env K P

$ r E Ag � Env &'�ML�	
� Then optimal agent Agopt in an environment Env is the one that

maximizes expected utility:

Agopt �7NPORQTSUN�V
Ag G�WYX F

r G�H<I Ag J Env K u
$ r & P $ r E Ag � Env &Z	 (1)
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9.4 Bounded Optimal Agents
� Some agents cannot be implemented on some computers

(A function Ag �� E � Ac may need more than available memory
to implement.)� Write /[0 m to denote the agents that can be implemented on
machine (computer) m:

/10 m � �
Ag E Ag - /10 and Ag can be implemented on m �	

� We can replace equation (1) with the following, which defines the
bounded optimal agent Agopt:

Agopt �\NPO]Q SUN�V
Ag G�W^X m

F
r G�H'I Ag J Env K u

$ r & P $ r E Ag � Env &2	 (2)
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9.5 Predicate Task Specifications

� A special case of assigning utilities to histories is to assign 0
(false) or 1 (true) to a run.� If a run is assigned 1, then the agent succeeds on that run,
otherwise it fails.� Call these predicate task specifications.� Denote predicate task specification by _ .

Thus _ �� � � 6`��La� .
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9.6 Task Environments

� A task environment is a pair * Env �b_ + , where Env is an
environment, and

_M�� � � 6`�
La�
is a predicate over runs.

Let ced be the set of all task environments.� A task environment specifies:

– the properties of the system the agent will inhabit;

– the criteria by which an agent will be judged to have either
failed or succeeded.
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� Write  gf $ Ag � Env & to denote set of all runs of the agent Ag in
environment Env that satisfy _ :

 gf $ Ag � Env &'� �
r E r -  $ Ag � Env & and _ $ r &%�MLa�	

� We then say that an agent Ag succeeds in task environment
* Env �3_ + if

 gf $ Ag � Env &%�h $ Ag � Env &
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The Probability of Success

� Let P $ r E Ag � Env & denote probability that run r occurs if agent Ag
is placed in environment Env.� Then the probability P $ _ E Ag � Env & that _ is satisfied by Ag in Env
would then simply be:

P $ _ E Ag � Env &<� F
r G�HjikI Ag J Env KP

$ r E Ag � Env &
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Achievement & Maintenance Tasks

� Two most common types of tasks are achievement tasks and
maintenance tasks:

1. Achievement tasks Are those of the form “achieve state of
affairs l ”.

2. Maintenance tasks Are those of the form “maintain state of
affairs m ”.
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� An achievement task is specified by a set G of “good” or “goal”
states: G n E.

The agent succeeds if it is guaranteed to bring about at least one
of these states (we do not care which one — they are all
considered equally good).� A maintenance goal is specified by a set B of “bad” states: B n E.

The agent succeeds in a particular environment if it manages to
avoid all states in B — if it never performs actions which result in
any state in B occurring.
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10 Agent Synthesis
� Agent synthesis is automatic programming: goal is to have a

program that will take a task environment, and from this task
environment automatically generate an agent that succeeds in
this environment:

syn �oced � $ /10qp �or �"&Z	
(Think of

r
as being like null in JAVA.� Synthesis algorithm is:

– sound if, whenever it returns an agent, then this agent
succeeds in the task environment that is passed as input; and

– complete if it is guaranteed to return an agent whenever there
exists an agent that will succeed in the task environment
given as input.
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� Synthesis algorithm syn is sound if it satisfies the following
condition:

syn $ * Env �2_ + &'� Ag implies  $ Ag � Env &'�h sf $ Ag � Env &Z	
and complete if:

t
Ag - /10 s.t.  $ Ag � Env &%�h uf $ Ag � Env & implies syn $ * Env �b_ + &wv� r 	
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