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Abstract

We describe the architecture and query-
answering algorithms used in the Informa-
tion Manifold, an implemented information
gathering system that provides uniform ac-
cess to structured information sources on the
World-Wide Web. Our architecture provides
an expressive language for describing infor-
mation sources, which makes it easy to add
new sources and to model the fine-grained dis-
tinctions between their contents. The query-
answering algorithm guarantees that the de-
scriptions of the sources are exploited to ac-
cess only sources that are relevant to a given
query. Accessing only relevant sources is cru-
cial to scale up such a system to large num-
bers of sources. In addition, our algorithm
can exploit run-time information to further
prune information sources and to reduce the
cost of query planning.

Introduction

The number of structured information sources that is
available online is growing rapidly. For example, there
are many sources on the World-Wide Web (WWW)
that provide a query interface (e.g., HTML forms).
Even more sources behave as structured sources if we
use an appropriate interface program (e.g., for pars-
ing structured text files). As another example, large
institutions have a vast number of internal databases
available online. Even though each of these sources is
structured and supports high-level queries, the interac-
tion with a multitude of sources is much like browsing.
The user must consider the list of available sources, de-
cide which ones to access, and then interact with each
one individually. Furthermore, the user must manually
combine information from multiple sources.
Information agents are systems that provide a uni-
form query interface to multiple information sources
(e.g., Internet Softbot [Etzioni and Weld, 1994],
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SIMS [Arens et al., 1996], TSIMMIS [Chawathe et al.,
1994], Infomaster [Geddis et al., 1995], HERMES [Sub-
rahmanian et al., 1995], Nomenclator [Ordille and
Miller, 1993]). In such a system the user expresses
what he or she wants, and the system determines which
information sources are relevant to the query using de-
scriptions of the sources available to the system. The
system therefore frees the user of having to find the rel-
evant information sources and interact with each one
separately, and it combines information from multiple
sources to answer user queries. Such systems face many
challenges because the sources are autonomous, het-
erogeneous and use different data models and vocab-
ularies. One of the most important challenges arises
from the fact that many information sources contain
closely related data. For example, there may be many
sources describing items for sale and their properties,
and the sources differ depending on properties such as
the type of items in the database, price ranges, etc.
The descriptions of the information sources need to
be able to model the fine-grained differences between
contents of sources. Primarily, such modeling ability
is needed in order to be able to prune the number of
sources accessed for a given query, since the number
of information sources accessed is a dominant factor in
the cost of query processing.

This paper describes the architecture and query-
answering algorithm used in the Information Manifold,
an implemented system that provides uniform access to
structured information sources on the WWW. The In-
formation Manifold has several distinguishing features.
First, contents of information sources are described by
query ezpressions that can use classes and roles de-
fined in the CLASSIC description language as well as
ordinary predicates of any arity and order predicate
(e.g., <, <). Consequently, it is easy to add infor-
mation sources without changing the view seen by the
user, and to model the fine-grained differences between
the contents of sources. Second, the query-planning al-
gorithm uses the source descriptions to determine pre-
cisely which information sources (and combinations of
information sources) can yield answers to the query.
Pruning irrelevant sources is crucial for scaling up such



a system to a large number of sources. Third, the
algorithm inserts (efficiently verifiable) conditions in
the query plans that enable using run-time bindings to
prune additional source accesses.

Example

We illustrate the main components of the Informa-
tion Manifold architecture and algorithms with the
following example that we use throughout the pa-
per. A user of the Information Manifold is presented
with a world-view which is a set of relations (includ-
ing a class hierarchy) modeling the kinds of informa-
tion that can be obtained from the available sources.
For example, suppose we are providing access to sev-
eral databases describing second-hand cars for sale and
their properties, and to several servers providing re-
views of cars and other products. The world-view in-
cludes the relation CarF S(model, year, price, owner)
describing the car’s model, year of manufacture,
price and owner contact number, and the rela-
tion Review(product, year, review) providing a review
(e.g., string of text) for products. The world-view also
contains a hierarchy of car classes shown in Figure 1.

car

RN

AmericanCar ForeignCar

ItalianCar FrenchCar GermanCar JapaneseCar

Figure 1: Class hierarchy of cars. The classes Amer-
icanCar and ForeignCar are disjoint, as are ltalianCar,
FrenchCar, GermanCar and JapaneseCar.

The relations in the world-view are only wvirtual.
All the actual data are stored in external information
sources. The Information Manifold contains descrip-
tions of contents of these information sources, as seen
in Figure 2. Information sources are modeled by de-
scribing which relations can be found in them. The
relation in an information source (denoted throughout
the paper by v1,...,v,) is described by a conjunctive
formula. Informally, the formula describes the con-
straints satisfied by facts in the relation found in the
source. In the example, information sources 1 and 2
contain cars for sale. Source 1 contains the relation v,
that provides only Japanese cars manufactured begin-
ning in 1990, while source 2 has only luxury cars priced
over $20,000. Note that neither of these sources is
said to contain all the cars satisfying these constraints.
Sources 3-5 provide reviews of products. Source 3 pro-
vides reviews of foreign cars, source 4 provides reviews
of cars manufactured up to 1989, and source b provides
reviews of cars manufactured in the past 6 years.

Source 1: Japanese cars beginning 1990.
vi(model,year, price, owner) :
CarFS(model, year, price, owner)A
JapaneseCar(model) A year > 1990.
Source 2: Luxury cars
vz(model,year, price, owner) :
CarFS(model, year, price, owner) A price > $20,000.
Source 3: Foreign car reviews
vs(product, year, review) :
Review(product,year, review) A ForeignCar(product)
Source 4: Old car reviews
vs(product, year, review) :
Review(product,year, review) A Car(product)A
year < 1989
Source 5: Last 6 years car reviews
vs(product, year, review) :
Review(product,year, review) A Car(product)A
1991 < year < 1996

Figure 2: Example information sources

Queries to the system are formulated in terms of
the world-view relations, thereby freeing the user from
having to know the specific vocabulary used in every
information source. For example, suppose the user is
interested in finding Japanese cars and their reviews,
for cars manufactured beginning 1988 and priced at
less than $5000. Ordinarily, the user would have to ac-
cess each of the car sources individually, retrieve all the
cars that may be relevant, and then search for a review
for every relevant car. In the Information Manifold the
user can pose the following query:

¢(Mo,Ye, Ow, Pr, Re) :
CarFS(Mo,Ye, Pr,Ow) A Review(Mo,Y e, Re)A
JapaneseCar(Mo) A Pr < $5000 A Ye > 1988.

Given a query, the system uses the descriptions of
the sources to generate a query-answering plan. As
stated, the key challenge we address in our system
is generating a plan that prunes as many information
sources as possible.

To answer this query, our algorithm first decides
which information sources are relevant. Source 1 is
relevant because it contains Japanese cars, and the
manufacturing years given in the source (> 1990) over-
lap with the years requested in the query (> 1988).
Source 2 is irrelevant because the prices of the cars
in the source are too expensive. The source reviews
(3-5) are relevant to the query because they each con-
tain reviews of cars that may be relevant. For exam-
ple, since the class ForeignCar subsumes the class
JapaneseCar, Source 3 is relevant.

Next, the algorithm will compute conjunctive plans
for answering queries by considering the possible com-
binations of relevant sources. Combining information
from Sources 1 and 3 is possible, because the reviews
of cars that are found in Source 1 can be found in



Source 3. Therefore, the conjunctive plan:
vi(Mo,Ye, Pr,Ow)Avs(Mo,Ye, Re) A Pr < $5000

is a valid one, and furthermore all the answers it re-
turns are guaranteed to be answers to the query, since
the Sources 1 and 3 together enforce the constraints on
the country and year of manufacture that are required
in the query. Similarly, combining Sources 1 and 5 is
also a valid conjunctive plan.

Even though Source 4 is relevant to the query, it
cannot be used in conjunction with Source 1, since the
years of coverage of the two sources do not overlap.
Therefore, there is no way to use Source 4 for answering
this query, given the current sources.

Finally, the reasoning described above takes into
consideration the constraints in the query and the de-
scriptions of the sources. At run-time we may obtain
additional information that enables pruning source ac-
cesses. For example, consider the plan combining
Sources 1 and 5. If the year of the car obtained
from Source 1 is 1990, then there is no point going to
Source 5. Therefore, our algorithm will insert a run-
time condition Ye > 1991 that will be checked after
accessing Source 1. If the condition is not satisfied,
Source 5 will not be searched for a review for the spe-
cific car. O

There are many issues that need to be addressed in
a system that provides integrated access to multiple
information sources. This paper focuses on the prob-
lem of selecting the relevant sources to a query and
creating a query plan. Important aspects of our sys-
tem that we do not describe include the ordering of
accesses to information sources (which has significant
impact on performance) and the question of determin-
ing whether two constants in different sources refer to
the same object in the world.

Representation of information sources
Preliminaries

The representation language used in the world-view
and information source descriptions in the Information
Manifold, CARIN-CLAssIC [Levy and Rousset, 1996],
combines the description logic used in CLASsIC and
relations of arbitrary arity. Description logics are very
natural in modeling multiple information sources since
many sources can be viewed as containing instances
of some class of objects, and we need to reason about
the relationship among these classes. However, in or-
der to model sources that may be arbitrary relational
databases, we need the ability to represent relations
with arbitrary arity. In addition, our language con-
tains the interpreted order relations {<, <, =, #}.
Formally, unary relations in the world-view are
called classes, and binary relations are called roles.
Classes in the world-view are associated with descrip-
tions. A description in CLASSIC can be built using the

following grammar: (A denotes a class name, C and D
denote descriptions, and R denotes a role):?

C,D:—A|CND|@ RC)|(> nR)|(< nR)

Intuitively, associating a concept C in the world-
view with a complex description D specifies the con-
ditions for an individual to belong to C. For example,
the following is a description of the class of Japanese
cars, for which all previous owners are American and
that had at most two previous owners:

JapaneseCar M (all owner AmericanPerson) I
(< 2 owner).

A query @ to the Information Manifold is a conjunction
of the form:

Q(?) : EI)_(pl()_fl) A... /\pn()_(n),

where X, X1,..., X, are tuples of variables or con-
stants. and the p;’s are any of the relations in the
world-view. The variables in Y, called the distin-
guished variagbles of the conjunctive formula, are the
variables that appear in X; U...U X,, but not in X,
and the answer to the query is the set of bindings that
we can obtain for the variables in Y. We require that
any variable that appears in an atom of an order re-
lation in a query also appear in a atom of non-order
relation.

If 9 is a conjunctive formula with distinguished vari-
ables Y1,...,Y;, and Z = Z,..., 7 is a tuple of vari-
ables, we denote by 9(Z) the formula in which ¥; is
replaced by Z;, for 3, 1 <1< [,

The contents of an information source

There are several desiderata for the representation of
information sources. First, since many sources contain
closely related data, it is important to be able to model
the fine-grained differences between their contents, in
order to be able to determine precisely which sources
are relevant to a given query. In our example, there
are several sources for cars and for reviews, but de-
termining which are relevant was based on reasoning
about the constraints on their contents. Second, since
the number of information sources is likely to be large
and frequently changing, we should be able to add new
information sources without changing the world-view
for each one of them, even if the contents of the in-
formation source do not correspond directly to one of
the relations in the world-view. Finally, the language
for describing sources should enable us to reason effec-
tively about relevance of sources to queries.

We model an information source as containing tuples
of a relation (or several relations), and the description
of the source specifies the constraints on the tuples that
can be found in the relation. Formally, the contents of
an information source are described by a pair (or set
of pairs) of the form (v, r,), where v is a relation name
with arity m,, and r, is a conjunctive formula of the

!These are only a subset of the CLASSIC constructors.



form 3U p1(U1)A. . .Apn(Uy), i-e., a conjunctive query.
The formula r, has m, distinguished variables. The
relation name v is a new name that does not appear in
the world-view, and is only used in a single pair in the
description of one information source.

Such a description means that the source can be
asked a query of the form v(Z) (or any partial instanti-
ation of it), and returns tuples of arity m, that satisfy
the following implication: (VZ)[v(Z) = ry(Z)]. That
is, every tuple obtained from the information source
satisfies the conjunction r,. Note that the description
does not imply that the source contains all the tuples
that satisfy r, (see [Etzioni et al., 1994] for a formalism
dealing with complete information).

The representation of information sources satisfies
our desiderata. The expressive power of conjunctive
queries, CLASSIC descriptions and order constraints
provides a very rich language in which fine-grained dis-
tinctions between sources can be expressed. The fact
that sources are described as queries means that we do
not have to add a relation to the world-view whenever
sources are added, since the relation found in a source
does not have to correspond directly to a relation in the
world-view. Finally, as we show in subsequent sections,
we can determine ezactly which sources are relevant to
a given query.

Example 1: Source 1, containing Japanese cars
whose manufacturing year is 1990 or later, is described
by the pair

(v1(model, year, price, owner),
CarF S(model, year, owner, price) A
JapaneseCar(model) A year > 1990)).

As an example of the advantage of describing con-
tents as conjunctive queries, suppose we encounter
a source in which Japanese cars have already been
matched with their reviews. We do not have to cre-
ate a new relation that has all the attributes of a car.
Instead, we can describe the source as follows:

(ve(model, year, price, owner, review),
CarF S(model, year, owner, price) A

Review(model, year, review) A JapaneseCar(model)).

Query plans

Given a query of the form
QYY) : IX p1(X1) A ... A pa(Xn),

the query processor generates a set of conjunctive plans
for answering Q(Y). A conjunctive plan is a sequence
of operations that accesses some of the information
sources, and performs local relational operations (e.g.,
join, union, selections). In this paper we focus on the
logical aspects of query-answering plans, and therefore
we represent a conjunctive plan P as a conjunctive
query over the information source relations, i.e., as a
formula of the form

Q(Y) : Hﬁvl(ﬁl) ARWA U[(le) ACp

where each of the v;’s is a relation name associated
with an information source, and Cp is a conjunction
of atoms of order relations. Note that the distinguished
variables in the plan are the same as the ones in the
query. Given a conjunctive plan P, the descriptions of
the information sources imply that the following con-
straints hold on the answers it produces: (recall that
T4, is the formula describing the constraints on the tu-
ples found in v;)

Conp : 74, (U1) A ... A1y, (Ui) A Cp.
Example 2: The plan P; 3
vi(Mo,Ye, Pr,Ow) Avz(Mo,Ye, Re) A Pr < $5000

guarantees that the answers returned satisfy Conp, ,

CarFS(Mo,Ye, Pr,Ow) A JapaneseCar(Mo)A
Ye > 1990 A Review(Mo,Y e, Re)A
ForeignCar(Mo) A Pr < $5000. O

A query-answering plan is a set of sound conjunctive
plans, as defined below.

Definition 1: A conjunctive plan P is sound if all the
answers it produces are guaranteed to be answers to the
query, t.e., if the following entailment holds:

(VY)Conp = [AX p1(X1) A ... A pu(X4)]-

Note that we may need to use several conjunc-
tive plans to answer a query because the information
sources are not complete, and therefore one combina-
tion of information sources may not yield all the an-
swers. The answer to a query Q(Y) is defined to be
the set of tuples that can be obtained by some sound
conjunctive plan.

Computing query plans

When accessing external sources, the cost of query pro-
cessing is dominated by the time taken to access ex-
ternal information sources, and the amount of data
that needs to be transferred. Therefore, the main op-
timization we consider is to minimize the number of
sources accessed. The set of conjunctive plans consid-
ered by a query processor provides an important mea-
sure by which to test its pruning ability. The Informa-
tion Manifold is distinguished in that it only considers
sound and relevant conjunctive plans. A conjunctive
plan is relevant if, according to the descriptions of the
sources and the constraints in the query, it may pro-
duce answers to the query.

Definition 2: A conjunctive plan P is relevant to a
query Q(Y) : AX p1(X1) A ... Apn(Xy) if the sentence
(Y, X)Conp Ap1(X1) A...Apn(Xy) is satisfiable. O

Intuitively, this means that given the constraints on
the contents of the sources, there may be tuples in
each of the sources accessed by the plan P, such that
together they can generate an answer to the query, us-
ing P. We now describe our query-planning algorithm.



The challenge in computing conjunctive plans is to
ensure that the constraints required in the query are
enforced by the information sources in the plan, or can
be enforced by additional constraints in the plan. The
problem is that an information source may not make
all the constrained arguments available. For example,
if Source 1 projected out the price of the car, we would
not be able to enforce any additional constraint on the
price that isn’t already enforced by the source.

Example 3: In our example, the conjunctive plan
vi(Mo,Ye, Pr,Ow)Avs(Mo,Ye, Re) A Pr < $5000 is
relevant, because the cars found in Source 1 overlap
with the cars reviewed in Source 3, and therefore the
plan can generate answers to the query. Note that this
plan only generates a subset of the answers, because it
can only return a restricted class of Japanese cars. The
conjunctive plan vi(Mo,Ye, Pr, Ow)Avs(Mo,Ye, Re)
is not a relevant plan because cars found in Source 1
are not reviewed in Source 4. O

Computing query plans proceeds in two steps. In
the first step, we compute, separately for each subgoal
in the query, which information sources are relevant to
it. Informally, an information source is relevant to a
subgoal g if, the description of the source contains a
subgoal g; that can be unified with g, such that after
the unification, the constraints in the query and the
constraints in the source description are mutually sat-
isfiable. The details of this step are shown in Figure 3.

In the second step of the algorithm we consider
conjunctive plans constructed by chosing one relevant
source for every subgoal in the query, and check each
one for soundness and relevance. Specifically, we con-
sider every conjunctive plan @' of the form

¢ Y) : AU (U A...Ava(Un)

where vi(Ui) has been deemed relevant to subgoal p;
in the query. For each such conjunctive plan we check
that it is (1) relevant, (2) sound (if it is not a sound
plan, we check whether it can be made sound by adding
conjuncts of order predicates,? and (3) minimal (i.e.,
we cannot remove a subgoal from the plan and still ob-
tain a sound plan). These properties are checked using
algorithms for containment of conjunctive queries in
CARIN [Levy and Rousset, 1996].

Example 4: Continuing with our example, our al-
gorithm will consider the sources relevant to the first
subgoal, CarFS(Mo,Ye, Pr,Ow). The description of
Source 1 has a subgoal of the relation CarFS, and
therefore the algorithm will check whether the con-
straints in the query are consistent with the constraints
on the data in the source. Specifically, it will check that
the following is satisfiable:

JapaneseCar(Mo) AYe > 1990A
Ye > 1988 A Pr < $5000.

2If a sound plan can be obtained, it is enough to consider
additional order atoms that include constants that occur in
the original query, Q [Levy et al., 1996].

procedure generate-relevant-sources(Z,Q)
/* T is a set of information sources, and @ is a conjunctive
query of the form ¢(X) : (3X)g1(X1) A ... gm(Xm) ACy,

where C, is the conjunction of order atoms in Q. */

for every subgoal g;(X;), 1 <1< m do:
relevantSources; = 0
for every non-order conjunct 4(Y) in a formula
ry in the pair (v,r,) in a description of a source in
T do:
if g; = u or g; and u are non-disjoint classes then:
Let % be the mapping defined on the variables of
r, as follows:
if Y is the j’th variable in ¥ and is not
existentially quantified in r,
then (YY) = X;, where Xj is the j’th
variable in X;.
else ¥(Y) is a new variable that does not
appear in @ or r,.
Let C(Q) and C(v) be the conjunction of
constraint subgoals in @ and ¥(r,), respectively.
if C(Q) A C(v) is satisfiable, then add % (ry)
to relevantSources;.
return {relevantSourcesi,...,relevantSourcesm}.
end generate-relevant-sources.

Figure 3: Algorithm for determining which sources
are relevant to each subgoal in the query. The con-
straint subgoals in a conjunctive formula include all the
atoms with either order predicates, or CLASSIC classes
and roles. Disjointness of constraints is determined
by combining algorithms for disjointness of order con-
straints [Ullman, 1989] and of class constraints [Levy

and Rousset, 1996].

Since it is, the algorithm  will re-
turn v1(Mo,Ye, Pr,Ow) in relevantSources;. Since
the price of cars in Source 2 is higher than those re-
quired in the query, the algorithm will determine that
Source 2 is irrelevant.

For the second subgoal, Review(Mo,Y e, Re), the al-
gorithm will return (vs(Mo,Ye, Re), va(Mo,Ye, Re),
vs(Mo,Ye, Re)) for relevantSources;.

In the second step, the algorithm will first consider
a plan combining Sources 1 and 3. Since the following
implication holds, the plan is sound.

[CarFS(Mo,Ye, Pr,Ow) A JapaneseCar(Mo)A
Review(Mo,Ye, Re) A ForeignCar(Mo)A
Ye > 1990 A Pr < $5000]
=
[CarFS(Mo,Ye, Pr,Ow) A JapaneseCar(M o)A
Review(Mo,Ye, Re) ANYe > 1988 A Pr < $5000]

Furthermore, it is also a relevant plan because the fol-
lowing formula is satisfiable:

ForeignCar(Mo) ANY e > 1990 A JapaneseCar(Mo)A
CarFS(Mo,Ye, Pr,Ow) A Review(Mo,Y e, Re)A
Pr < $5000 A Ye > 1988.



The plan combining Sources 1 and 5 is also a sound and
relevant one. These plans are also minimal, in that we
cannot remove any subgoals from them. O

Our algorithm is guaranteed to produce only sound
and relevant plans. Furthermore, it is possible to use
the algorithm described in [Levy and Rousset, 1996]
to compare conjunctive plans and to guarantee that
no conjunctive plan is redundaent. That is, every con-
junctive plan may yield some answer that is not given
by any of the other conjunctive plans. As a conse-
quence, it can be shown that the plan accesses the
minimal number of information sources relevant to the
query. The second question to ask is whether our al-
gorithm produces all the necessary conjunctive plans.
The answer is based on the close relationship between
the problem of finding conjunctive plans and the prob-
lem of answering queries using materialized views. It
follows from [Levy et al., 1995a] that if there are no
order predicates or CLASSIC definitions, we need only
consider conjunctive plans whose length is at most the
length of the query, which is precisely what our algo-
rithm does. As shown in [Levy et al., 1995a] we may
need to modify our algorithm to consider longer plans
in the presence of order constraints and CrLaAssIC defi-
nitions. It also follows from that paper that the prob-
lem of rewriting queries using views is NP-complete
in the number of sources even when order predicates
and CLAssIC definitions are not present. The algo-
rithm described here is designed to reduce the number
of plans considered. The first step of our algorithm, in
which we consider the sources relevant to each subgoal
in isolation, provides a very effective filter on candi-
date plans we consider. It guarantees that in every
plan we check, each of the information sources has al-
ready been found to be relevant to the corresponding
subgoal in the query. This reduction is especially ef-
fective when the relevance of a source depends mostly
on the subgoal it is being matched with and not on
which information source is used to satisfy the other
subgoals. Finally, it should be noted that although
the cost of checking minimality and soundness of a con-
junctive plan is exponential, it is exponential only in
the size of the query, which tends to be small, and not
in the number of information sources or their contents.

Exploiting run-time information

The conjunctive plans computed in the previous sec-
tion consider only the constraints appearing in the
query and in the descriptions of the information
sources. This section describes two ways run-time in-
formation can be used to further optimize query eval-
uation. First we describe an algorithm for inserting
run-time conditions that use bindings to check the rel-
evance of a source, and then we describe how parts
of the planning can be postponed until some parts of
the plan have been executed and run-time bindings
obtained. In this section we assume that the query

planner decided on some ordering the subgoals of the
plan. In our examples, the ordering is left to right.

Computing run-time conditions

Informally, the reason that a conjunctive plan may
become irrelevant at run-time is that a binding ob-
tained for some variable X from one of the information
sources contradicts a constraint on X that is known to
hold in an information source that is accessed subse-
quently in the conjunctive plan. In our example, even
though the combination of Sources 1 and 5 is sound and
valid, if the car obtained from Source 1 is from 1990,
then its review will not be found in Source 5. Figure 4
describes an algorithm for computing additional run-
time conditions that guarantee that we do not pursue
useless conjunctive plans.

procedure compute-runtime-conditions(P)
/* P is a conjunctive plan of the form
v1(O1) A ... Ava(Un) AC,

where C is a conjunction of order atoms. %/

Condo = True.
for:=1,...,n—1,
T; is the set of variables appearing in v1,...,v;.

FinalCond; is the projection of Conp on T.

C; is the projection of C on the variables in T;.

TempCond; = vy, (U1) A ... Ary;(T:) A Ci.

Cond; is a non redundant constraint D such that
TempCond; A D is satisfiable if and only if
FinalCond; is satisfiable.

Insert Cond; after v; in the plan.

end generate-runtime-conditions.

Figure 4: Computing run-time conditions.

Example 5: Consider the plan combining Sources 1
and 5. The final conditions that apply to the variables
appearing in the first subgoal (i.e., FinalCond,) are:

1991 < Ye < 1996 A JapaneseCar(Mo) A Pr < $5000.

However, after obtaining bindings from Source 1 (and
applying the condition on the price), these bindings
are known to satisfy (i.e., TempCond, is):

1990 < Ye A JapaneseCar(Mo) A Pr < $5000.

Therefore, the condition D = 1991 < Ye < 1996 is
inserted between the accesses to Sources 1 and 5. O

The property of algorithm compute-runtime-
conditions is summarized by the following theorem.
Informally, it guarantees that at every point during
the execution of a conjunctive plan, the information
sources accessed may still lead to answers of the query.
The proof is omitted because of space limitations.

Theorem 1: Let v1(U1)A...Avy(Un) AC be a sound
and relevant conjunctive plan for the query Q, and let
c1A...Ncp_1 the conditions inserted in the plan by al-
gorithm compute-runtime-conditions. Suppose the



subgoals vy, ..., v; have been executed yielding bindings
ai, ...,y for the variables Z1,...,Z,, appearing in
v1,...,V;, and that the conditions c1,...,c; are satis-
fied. Then, the following formula is satisfiable:

(3}7’) Conp A (Zl = al) TAYPAN (Zm = a,m),

where Y' are the variables that appear in Conp but not
M Z1yeeey L.

Interleaving planning and execution

In [Golden et al., 1994; Knoblock, 1995] it is shown
that there are significant advantages to interleaving
query planning and execution in the presence of many
information sources. Because of the large number of
sources, the space of possible plans may be large. After
executing partial plans (i.e., plans that answer a sub-
set of the subgoals in the query), we obtain additional
information that enables us to prune significantly the
number of relevant information sources and therefore
reduce the cost of planning for the rest of the query.

The key issue in effectively interleaving planning
and execution is to decide when to stop planning and
start executing. An important advantage of our query-
planning algorithm is that it provides a natural cri-
terion for making this decision. Recall that in the
first step of our query-planning algorithm we deter-
mine which information sources are relevant to each
subgoal in isolation. The result of this step provides a
clear indication of the causes of a large space of con-
junctive plans. Specifically, subgoals in the query for
which there is a large number of relevant sources will
cause the number of combinations checked in the sec-
ond step of the algorithm to grow significantly. Hence,
it is better to postpone the planning for those subgoals
until binding from others are obtained.

Conclusions and related work

The problem of providing a uniform interface to mul-
tiple information sources has received considerable at-
tention in both the AI and Database literature. The
Information Manifold is distinguished in that it com-
bines novel methods from both fields to solve this prob-
lem. It provides an expressive language to describe the
contents of information sources declaratively, and ex-
press the fine-grained distinctions between their con-
tents. The query-planning algorithm is based on a
novel method for answering queries using materialized
database views, and guarantees that only relevant in-
formation sources are accessed. The algorithm also
enables interleaving planning and execution and ex-
ploiting run-time bindings to further prune the rele-
vant sources. The Information Manifold is a fully im-
plemented system and currently provides access to 100
information sources on the WWW.

An important aspect of our system that has not been
described here is the modeling of source capabilities,
i.e., the kinds of queries that the source can answer
about its contents. For example, a bibliography source

may require that either the name of the author or the
title be given as input. After generating query plans,
the query processor searches for an ordering of the
subgoals such that the source capability restrictions
are satisfied. The problem of answering queries using
views, when the views can be queried with restricted
binding patterns, was first considered in [Rajaraman et
al., 1995]. In [Kwok and Weld, 1996] it is shown that if
source capabilities are considered and we restrict our-
selves to conjunctive plans, then there is no bound on
the size of the plans that need to be considered, if we
want to guarantee that all answers to the query are
obtained. They also propose methods for pruning the
space of plans that need to be considered in that case.

In the database community multidatabase systems
also have the goal of providing uniform access to mul-
tiple information sources [Litwin et al., 1990]. In these
systems the correspondence between the contents of
a source and the world-view is more direct. As one
example, in the Pegasus system [Ahmed et al., 1991]
every source is modeled as a class in a class hierar-
chy, which is disjoint from other classes. It is therefore
not possible to express relationships between sources
by means of constraints, and the relationships need to
be wired in to the schema. It should be noted that
some of these restrictions are imposed because multi-
database systems also intended also to enable users to
update the sources, and therefore they require source
descriptions that enable to maintain consistency, and
are concerned with concurrency control and transac-
tion processing issues.

More recently, several systems for integrating multi-
ple information sources are being built on the notion
of a mediator (e.g., TSIMMIS [Chawathe et al., 1994],
HERMES [Subrahmanian et al., 1995], CARNOT [Col-
let et al., 1991], Nomenclator [Ordille and Miller, 1993],
DISCO [Florescu et al., 1995]). Broadly, these systems
choose a set of queries, and provide for each one a pro-
cedure to answer the query using the available sources.
Given a new query, their algorithms answer it by trying
to relate it to existing queries. In Information Mani-
fold, since the sources are described independently of
the queries they will be used for, we are not restricted
by which queries can be answered by the system, and
it is easier to add or delete sources because we do not
have to modify the query-specific procedures.

In the Al community several systems have been de-
veloped based on explicit representations of the con-
tents of information sources (e.g., Internet Softbot [Et-
zioni and Weld, 1994], SIMS [Arens et al., 1996], In-
foMaster [Geddis et al., 1995]). SIMS requires every
information source to map to a class in the descrip-
tion logic system LOOM [MacGregor, 1988]. However,
instead of taking advantage of the reasoning services
of LOOM, SIMS selects the relevant sources using a
set of transformation rules. These rules correspond to
sound inferences that would be made in the CARIN
language underlying the Information Manifold. The



transformation rules in SIMS do not guarantee that a
query-answering plan will be found if one exists. The
Information Manifold provides a more expressive lan-
guage than SIMS, allowing both a description logic and
relations of arbitrary arity that are needed to model
relational-database sources. The ability to describe
sources by arbitrary conjunctive queries provides more
flexibility than in SIMS. For example, SIMS cannot
express that an information source contains a join of
two world-view relations. Most importantly, the In-
formation Manifold relies on the reasoning services of
the underlying representation language. Therefore we
do not have to mimic inferences in the query planner
(perhaps less efficiently), and can immediately benefit
from extensions provided by the knowledge represen-
tation system.

A formalism based on description logics for repre-
senting information sources is described in [Catarci and
Lenzerini, 1993]. They use subsumption-style reason-
ing to determine which sources are relevant to a given
query. They consider queries that ask for members of
a class (and not arbitrary conjunctive queries). There-
fore, they can determine relevance of sources solely
based on subsumption. A preliminary version of our
formalism for describing contents of sources was de-
scribed in [Levy et al., 1995b], but algorithms for an-
swering queries for this formalism were not described.
Context logics have also been proposed for modeling
contents of information sources [Farquhar et al., 1995],
but designing algorithms for determining relevance of
sources has not been addressed. Finally, [Etzioni et al.,
1994] describes an elegant formalism and algorithms
for representing that a source has complete information
of a certain kind, and shows that such information can
be used to prune accesses to information sources. One
direction in which we are currently extending the In-
formation Manifold is to exploit such knowledge using
techniques of rewriting queries using views.
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