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Abstract 
 

The keys to utilizing the potential of multi-robot 
systems are cooperation and coordination. Robots 
nowadays are equipped with better computing, high-
bandwidth communication, and many kinds of 
sensors and actuators. Designing an effective robot 
team to achieve a global task is a big challenge. In 
addition, robots will face more uncertainties in an 
unknown or dynamic environment. The main 
investigation of this paper focuses on multiple robot 
coordination based on a market approach. In 
simulation experiment domain, a primitive simulation 
framework is built based on Webots software. The 
scenario can be divided into three technical domains: 
deadlock domain, specific uncertainty domain, and 
fewest robot strategy vs. best efficiency strategy 
domain. This paper demonstrates that, to achieve 
surveillance task, a group of robots can collaborate to 
detect emergencies in an indoor environment. 
 
Keywords: Multi-robot system, market-based 
approach. 
 
1. Introduction 
 

This paper copes with a task allocation problem 
in a group of autonomous robots with different 
capabilities. In biology, swarm insects such as ants or 
bees can work together to achieve a goal. Higher-
level animals like wolves often hunt in a group. Can 
a robot team have such fantastic behaviors or 
intelligence? In software agent systems, multi-agent 
system and distributed artificial intelligence develop 
a lot of promising results. Although there is much 
research in negotiation among software agents, 
directly using these approaches to solve the problems 
in robotics is questionable [7]. A significant 
difference between software agents and robotic 
agents is that the latter often deal with more limited 
capabilities such as more restricted communication. 
Moreover, various failures occur more frequently in 
robotic systems. For instance, in order to adapt to 
faulty perception, robotic systems have to be able to 

accommodate larger error bounds. Thus, many real-
world factors should be taken into consideration in 
robotic systems.  

One of the most important issues that affect the 
architecture and operation of the robot team is 
heterogeneity. Heterogeneous teams are those in 
which there are at least two agents with different 
hardware or software capabilities. Currently, the 
main disadvantage of homogeneous robot teams is 
that they can only tackle very simple tasks. Therefore, 
heterogeneous teams are used to perform more 
complex tasks. In addition, designing robots with a 
small set of skills is often easier than designing fully 
capable robots.  

This paper proposes a market-based approach to 
the coordination of a heterogeneous robot team. 
Many potential robotic capabilities exist and this 
paper explicitly assumes that robots will have 
different capabilities. Each complex task needs 
different capabilities so that the task can be dealt with 
effectively and correctly. This paper chooses the 
capabilities by auction, and illustrates our auction 
mechanism through a simulated system, which is 
built in Webots 3D software platform [20].  

The rest of this paper is organized as follows. In 
next section a brief survey of related research on this 
problem is presented. In Section III, the multi-robot 
surveillance problem is defined and the concept of 
capability representation is proposed. The whole 
implementation is described in Section IV. The 
simulation scenarios and related results and 
discussion are shown in Section V. Section VI is the 
conclusion. 

 
2. Related Work 
 

The problem of multi-robot coordination in our 
research is related to many research domains, here 
the focus is on cooperative surveillance, task 
allocation and a relevant solution, i.e. market-based 
approach. 

 
2.1 Cooperative Surveillance 
 



A typical surveillance mission is an application of 
robot coverage problems [2]. In [6], the robot 
coverage problem is divided into three categories: 
blanket coverage, barrier coverage, and sweep 
coverage. Our surveillance task is very similar to 
sweep coverage because, during a particular time and 
in a specific area, the search robots try to maximize 
the number of detections and minimize the number of 
misses.  

The surveillance/search task can also be 
considered as a dynamic coverage problem because 
the environment is so large that every point in the 
environment can not be under the robots’ sensor 
shadows at each moment of time. Therefore, robots 
must thus randomly move in order to observe as 
many points in the environment as possible.  

In addition, our surveillance task is different from 
canonical clean-floor task. The canonical clean-floor 
task places emphasis on keeping track of the areas 
already cleaned. However, this is not important for 
the surveillance task because emergencies may 
happen unexpectedly anywhere.  

In this paper, each robot for a surveillance task is 
also like a mobile sensor. In [19], a novel system 
called Multi-Robot Sensor Network (MRSN) is 
proposed. It has two key features that are not 
observed in MANETs (mobile ad hoc networks): 
disconnection/delay tolerance and intentional 
mobility. The disconnection tolerance is allowable in 
terms of the existence of intentional mobility. That is, 
disconnection of communication links among sensor 
nodes can be compensated for by the intentional 
reach of the mobile sensor node toward the 
communication area of the destination node. 

In [17], optimal sensor placement and target 
location problem are described. Extension of mobile 
sensors is also introduced. Two ways to deploy 
sensors are deterministic approach and self-
organizing approach. For a highly dynamic 
environment, the self-organizing approach is 
preferred because the sensing location will change 
frequently. Dynamic deployment can respond to the 
change of the sensed environment in a real-time 
manner. Traditional sensor networks always pay 
attention to the positions of the sink or cluster-head 
from the viewpoint of energy efficiency and 
performance.  

In [15], each member, of the Active Sensor 
Networks (ASNs), has the global synchronized world 
view. In contrast, the nodes of a traditional sensor 
network may not have the global knowledge and may 
just perform the sensing task. The entities of ASN 
have more comprehensive capabilities than those of 
traditional sensor networks.  
 
2.2 Task Allocation 
 

In [10], there are two different meanings of the 
term task allocation. The first meaning is defining 

optimal number of robots necessary to perform the 
given task. The second meaning is of the assignment 
of robots to tasks.  

The problem in our research corresponds to the 
first description of task allocation. In other words, it 
can be defined as the dynamic resource allocation 
problem which is proposed in [8].  

 
2.3 Market-Based Approach 
 

Auction-based or market-based multi-robot 
coordination approaches received noticeable attention 
in recent years and were successfully implemented in 
a variety of multi-robot research domains. Readers 
can refer to a new review by M. Bernardine Dias et. 
al. [4] which surveys the state of art in the field.  

This paper is most similar to [8] which proposes 
an auction-based task allocation system called 
MURDOCH. It is built upon a principled, resource 
centric, publish/subscribe communication model. 
MURDOCH produces a distributed approximation to 
a globally optimum resource usage. Finally, they 
validated MURDOCH in two different domains : a 
tightly coupled multi-robot manipulation task and a 
loosely coupled multi-robot experiment in long-term 
autonomy. 

Auctions where bidders submit bids on 
combinations (called combinatorial auctions) recently 
received much attention in the multi-robot field [14] 
[5]. In [5], two types of auctions were compared: 
simple auction and combinatorial auction. The 
experiment`s results show that combinatorial 
auctions have higher scores in simulated games. 
Inspired from combinatorial auctions, [14] proposed 
a combinatorial bids based mechanism. In our 
research, because the bidders may bid on bundles of 
capabilities required for a task, our approach has an 
implicit relationship with combinatorial auctions. 
Therefore, combinatorial auctions are a future 
relevant research area for us.  

 
3. Problem Statement 

 
3.1 Problem Definition 

 
The multi-robot surveillance problem is defined 

as follows. 
Given 

• A set of robots R, each is identified by a 
geographic location and capabilities, and 

• A sequence of tasks T, each task t is identified by 
an occurrence time, an expiration time, a geographic 
location, and resource requirements. 

Then the problem is to find an assignment of 
robots to the tasks, such that 

• Each task t in T is assigned a subset of robots in 
R with sufficient capabilities to meet its resource 
requirements. 

The robots are assumed to be general-purpose 



mobile platforms. They are honest and cooperative. 
Moreover, a robot may break down any time, and 
may not be aware of its own failure. 

There are static obstacles in the robot environment. 
Tasks show up in random locations at random times 
and there are multiple tasks at each time. A task is 
considered done as long as the capable robot team 
arrives at the task, and this task is denoted a 
successful task. On the other hand, the task is a 
failure if at least one member of the capable robot 
team arrives too late (beyond the task expiration 
time). When the resource requirement of a task is 
satisfied by more than one robot team, the system 
needs a strategy to decide the team assignment. 

Two performance metrics are used to evaluate the 
performance of different strategies. 

• Task completion time: the time required for a 
capable robot team to reach the task. 

• Task success rate: the ratio of the number of 
successful tasks to that of total tasks. 

Our coordination strategies consider two different 
fitness variables. 

• The number of robots in a capable team. 
• The distances between each member of the team 

and the task. 
In general, an optimal strategy should minimize 

task completion time and maximize task success rate. 
But the choice of strategies is a trade-off. Section V-
C gives a further discussion. 

 
3.2 Capability Representation 
 

Because specific capabilities of robots can be 
used to tackle different tasks, this paper assumes that 
there is a mapping between the capabilities of robots 
and the resources that tasks need. If any collection of 
robots matches the mapping of a task, the robot team 
is assumed to perform the task independently and 
effectively. For example, if a task T needs resources: 
{w S ,w S }, where S , S  are the resource units, and 
w , w  are the weights, and if a robot R  has 
capabilities that map to resources such as: {w  S } 
and another robot R2 has capabilities that map to 
resources such as: {w  S , w  S }, where w  and 
w  are the weights. Then, if robot R  and robot R  
cooperate with each other, we represent their global 
capabilities as: {( w + w  ) S  , w  S }. If these 
weights satisfy ( w + w  ) >= w ,and w  >= w , 
we say the task T can be dealt with by robot R  and R . 
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In our simulation, without loss of generality, we 
assume all weights are one. 

 
4. Implementation 
 

The features of our system are as follows: 
1) Our approach presents a new auction based 
coordination mechanism by extending the help-based 
cooperation protocol [15]. 
2)  This paper uses multi-level agent architecture to 

organize the operation architecture from team-level 
decision-making to low-level motion controlling. 
3) Given the coordinates of the task, the robots use 
numerical potential field method to reach the target. 
4) The system can handle failure and uncertainty 
situations. Section V demonstrates this feature. 
 
4.1 Agent Architecture 
 

In robotic agent architecture, there are three 
layers: Control layer, Strategy layer, and Team layer. 
See Fig.1. 

1) Control layer: This layer contains perception 
module and motion control module. This layer is 
responsible for short-term decision-making, such as 
taking data from sensors, sending data to the robot 
strategy layer, and controlling the robot’s wheels. 
The robot has an obstacle-avoiding mechanism while 
moving toward the target or doing random walk.  

For simplicity and robustness, this paper uses 
Braitenberg architecture [3] to make robots move 
randomly and avoid obstacles. Each robot has two 
motors left and right from its orientation axis. If both 
motors are activated with the same positive or 
negative speed, the robot moves forward or backward. 
Differences between the motors’ speeds lead to a 
rotation as well as a possible movement. The 
Braitenberg architecture provides direct connection 
between proximity sensors and motor actuators, thus 
forming a reactive control mechanism. 

In addition, this paper applies the numerical 
potential field method [12] to make robots reach a 
target when the target`s location is known. The 
numerical potential field method constructs artificial 
potential fields incrementally by a wavefront 
expansion procedure. The potential values increase 
from the goal (lowest potential value) to all 
accessible positions in the environment. Then the 
robot follows the negated gradient to reach the goal.  

There are three perception submodules in each 
robot.  

In the first submodule, a camera on each robot 
provides the vision function just like the techniques 
in the literature [10] [16]. Objects with specific 
colors are regarded as intruders or emergencies. 
Robots can detect these objects by our color 
detecting algorithm.  

In the second submodule, sixteen proximity 
sensors are arranged at the periphery of the robot`s 
body. These sensors` orientations are perpendicular 
to the robot periphery, thus they are oriented 
outwards. These sensors detect collision between the 
sensory rays and obstacles in the environment. 

In the last submodule, each robot receives its 
geographic coordinates by appropriate devices, such 
as a global position system (GPS) or other self-
localized systems. Therefore, each robot precisely 
knows its position. 
 



 
 

Figure 1  Robotic agent architecture 
 

2) Strategy layer: This layer contains many 
individual modules, such as publishing tasks, bidding, 
and planning motion. The paper does not discuss the 
detail of work planner, therefore the work planner 
shows a dotted border in Fig 1. This layer makes 
longer-term decisions, involving the decision making 
of the task bidding and the calculation of the task 
allocation. The competitive bidding module receives 
the information from the team layer and computes the 
formation of the robot team. The bidding module also 
takes the time and the number of robots into 
consideration. The motion strategy planner 
determines the navigation of the robot and gives 
commands to the control layer for low level control.  

3) Team layer: This layer deals with teamwork 
strategies, such as getting information from candidate 
robots and organizing the most efficient team. The 
communication module in this layer broadcasts and 
receives data for the auction bidding, and also 
manages both robot and task information. The 
structure and organization of robot teams are also 
stored here. This layer interacts with the robot 
strategy layer for further processing.  

One argument is that an increase of the amount of 
transmitted data does not imply better performance 
on a collaborative multi-robot system. Hence, both in 
experiments and simulations, designing a suitable 
solution for the interpretation and usage of the 
transmitted information through communication is a 
challenge and a good research direction. 

 
4.2 Auction Based Coordination Mechanism 

 
Our coordination approach is inspired from [13] 

and [8]. A robot asks for help when finding a task by 
an auction mechanism. Each robot changes its role 
under different conditions. The robot becomes an 

auctioneer if it finds a task, or it becomes a 
subscriber to bid for the task.  

The state transition diagram is shown in Fig. 2. 
Initially, robots patrol and search the area for tasks. If 
a robot finds a task, it informs the others, gives an 
auction to assign the best team for this task, and 
supervises them until the task is finished. On the 
other hand, if a robot in search state receives an 
auction signal, it bids for this task. If the robot wins 
the bid, it goes to the target, otherwise it returns to 
search state.  

Each robot in a specific state performs the 
corresponding tasks and the details are as follows: 
 

 
 

Figure 2  State transition diagram 
 

1) Search: In the search state, robots walk 
randomly and search for targets by using a camera. 
When a target is detected, the robot changes to the 
publish state.  

One argument is whether the random walk 
approach in search state is more efficient in detecting 
an emergency than just making robot sit and spin.  

The main disadvantage of the random walk 
approach in search state is that the reliance on chance 
to find objects, intruders or emergencies [18].  

Other approaches exist. In [9], the robots move 
forward initially, then turn left or right through some 
random arc after random times. In [1], a sit-and-spin 
behavior that enables robots to make a series of turns 
is used as the “wander-for-trash＂behavior.  

2) Publish: In the publish state, two tasks are 
undertaken. First, a robot in the publish state 
broadcasts the message about the target to the other 
robots. This paper assumes that the communication 
range is unrestricted. The message contains the 
information related to the detected target, such as 
name, needed capabilities and coordinations. Second, 
each robot computes its fitness value and sends the 
value back to the publish robot. Note that the fitness 
value is defined in Section III. During this period of 
time, the publish robot collects and compares all the 
fitness values to choose the optimal result that best 



fits the selected strategy. For example, under the Best 
Efficiency Strategy, if there is more than one robot 
team that satisfies capability requirement, the publish 
robot chooses the team which is able to accomplish 
the task fastest. After the publish robot determines 
the optimal team, it sends the result to each robot and 
changes to the supervise state.  

3) Supervise: The supervise robot collects the 
“ arrival ＂ messages from all members of the 
winning team. The supervise robot gives a “start 
working＂command to all members of the winning 
team after all members arrive. Afterward, the 
supervise robot takes the monitor role to watch the 
task progress. If the task is finished, the supervise 
robot and these work robots change all their states to 
the search states. There is a special condition for the 
supervise robot. If there exists members which 
cannot arrive in time at the target to perform the task, 
the supervise robot confirms the situation and sends a 
“fire＂message to the absent robot and records this 
absence in memory. Remember, this paper assumes 
that the communication is unlimited.  

4) Subscribe: When a search robot receives the 
message about a target from the publish robot, the 
search robot changes its state to subscribe. To bid the 
task, the subscribe robot computes the fitness value 
and sends the value back to the publish robot. If the 
subscribe robot receives a “winner＂message, it 
goes to the target and performs the task.  

5) Work: In this state, the work robot informs the 
publish robot when it arrives at the target. The work 
robot waits for all other teammates to arrive in order 
to perform the task together so that the winning team 
can tackle tightly coupled tasks. This paper assumes 
that, if all members of the winning team arrive at the 
target, the robots complete the task. This paper does 
not tell how robots tackle the task. Finally, when 
finishing the task, the work robots change their states 
to search states. 

 
5. Experiment 
 

This section describes the experimental results in 
the simulation. Three scenarios are conducted to 
evaluate the effectiveness of our approach. All the 
experiments are performed in the Webots system [20]. 
The following are the descriptions of three scenarios 
and of their primary results. 
 
5.1 Deadlock 
 

1) General Description: When multiple robots 
detect more than two targets at the same time and the 
robots cannot tackle these tasks simultaneously, a 
deadlock occurs.  

2) Simulation Scene: Fig. 3 is the initial condition. 
Table 1 shows the robots` capabilities and the 
required resources of tasks. Both two tasks require 

two robots to accomplish. Each robot detects a task at 
the beginning, a deadlock occurs.  

3) Simulation Result: This experiment uses a 
timeout mechanism to deal with the deadlock 
problem. Thus if the auctioneer fails for some time to 
receive an acknowledge after sending a new task 
message, the auctioneer checks the packages sent by 
other robots. If another task is published, the 
auctioneer gives up its publish state and changes to 
another state. In Fig. 4, the blue robot gives up its 
auctioneer role and cooperates with the green robot 
to deal with the red target. 

 
Table 1  Specifications of deadlock scenario 

 
number of robot 
number of task 

capabilities of robot1 
capabilities of robot2 

required resources of task1 
required resources of task2

2 
2 

AC 
BD 

ABC 
BCD

 

 
 

Figure 3  Initial condition of deadlock scenario 
 

 
 

Figure 4  Final result of deadlock scenario 
 
5.2 Specific Uncertainty 
 

1) General Description: Robots might have 
difficulty in reaching the target in time (the robot 
happens to be broken, too many obstacles are in its 
way, etc.). If the auctioneer fails for some time to 
receive an “arrive＂message from assigned robot, 
the auctioneer fires the assigned robot. Then, the 
auctioneer reassigns the task and gives a specific tag 
to the broken/blocked robot in order to keep track of 
its absence.  



2) Simulation Scene: Fig. 5 shows the initial 
condition. The robot surrounded by obstacles denotes 
a broken one. The broken robot is closer to the task 
thus the robot is assigned the task at the beginning. 
Table 2 shows the robots` capabilities and the 
required resources of tasks.  

3) Simulation Result: In Fig. 6, the auctioneer 
gives up the broken/blocked robot and reassigns the 
auction. Therefore, a robot farther away replaces the 
broken/blocked robot at the task. 

 
Table 2 Specifications of uncertainty scenario 

 
number of robot 
number of task 

capabilities of robot1 (auctioneer) 
capabilities of robot2 
capabilities of robot3 

capabilities of robot4 (broken robot) 
required resources of task

4 
1 
A 
B 
C 
C 

ABC
 

 
 

Figure 5  Initial condition of uncertainty scenario 
  

 
 

Figure 6  Final result of uncertainty scenario 
 
5.3 Fewest Robot Strategy vs. Best Efficiency 

Strategy 
 

1) General Description: This experiment 
compares two coordination strategies under the same 
conditions. This scenario assumes that the task can be 
done either by one robot or by multiple robots owing 
to the fact that either have the required capabilities. 
Fewest Robot Strategy (FRS) chooses the fewest 
number of robots as the optimal policy. The task 
completion time is not optimal but the strategy 

remains more robots to patrol the environment. Best 
Efficiency Strategy (BES) chooses the most efficient 
robot team so that the task completion time is 
minimized. The most efficient robot team means the 
team which arrives at task fastest.  
 

2) Simulation Scene: Table 3 shows the robots` 
capabilities and the required resources of tasks. 100 
tasks occur sequentially in particular period. This 
experiment tests five task occurrence periods: 2000, 
3000, 4000, 5000, and 6000 cycles. A cycle is the 
duration of Webots simulation step. The duration 
value is assumed 64 milliseconds. If no suitable robot 
team are assigned to a task, the task disappears after 
the expiration time limit. This experiment uses two 
expiration time limits: 2000 and 5000 cycles. 
 

Table 3  Specifications of comparison scenario 
 

number of robot 
number of task 

capabilities of robot1 (auctioneer) 
capabilities of robot2 
capabilities of robot3 
capabilities of robot4 

required resources of each task

4 
100 
A 
B 
C 

ABC 
ABC

 
3) Simulation Result: Table 4 shows that BES can 
complete tasks more quickly both in two expiration 
time limits. Table 4 also shows that, the shorter the 
expiration time limit, the shorter the average task 
completion time. That is, the faster the successful 
tasks are accomplished. Tasks with shorter expiration 
time limit are prone to fail. Therefore only tasks, that 
are found easily and are assigned faster robot teams, 
become successful. As a result, the average task 
completion time becomes shorter.  

 
Table 4  Average completion time results 

 
Expiration time limit 

(unit:64ms) BES FRS

2000 2766.934 3011.138
5000 3233.445 3686.037

 
With expiration time limit 2000 cycle, Fig. 7 
compares the average task completion time of two 
strategies in five task occurrence periods. Fig. 8 is the 
similar simulation with expiration time limit 5000 
cycle. Fig. 7 and Fig. 8 both show that the longer the 
task occurrence period is, the shorter the average 
completion time is. This is because robots have 
sufficient time to accomplish tasks when the tasks 
occur less frequently. If tasks occur frequently, 
deadlock might happen. Thus robots need more time 
to deal with these tasks. Another explicit result is that 
BES has shorter average completion time than FRS.  

 



 
 
Figure 7  Comparison of FRS and BES for 
average task completion time under the expiration 
time limit 2000 cycles. The horizontal axis 
represents period of task occurrence and the 
vertical axis represents the average task 
completion time. 
 

 
 
Figure 8  Comparison of FRS and BES for 
average task completion time under the expiration 
time limit 5000 cycles. The horizontal axis 
represents period of task occurrence and the 
vertical axis represents the average task 
completion time. 
 

Table 5 shows the task success rate of BES is a 
little higher than that of FRS both in two expiration 
time limits. Fig. 9 and Fig. 10 provide the related 
information for the result of Table 5.  

With expiration time limit 2000 cycle, Fig. 9 
compares the task success rate of two strategies in 
five task occurrence periods. Fig. 10 is the similar 
simulation with expiration time limit 5000 cycle. The 
first result is that the longer the task occurrence 
period is, the higher the task success rate is. This is 
because robots have more chances to form an 
effective team to accomplish tasks in longer task 
occurrence period.  

Both for BES and FRS, the longer the task 
occurrence period is, the higher the task success rate 
is (Fig. 9 and Fig. 10). This is mainly because, as the 
task occurrence period is greater than the average 
task completion time, the winning team has sufficient 
time to reach the target so that the winning team can 
tackle more discovered tasks. Thus the curves of Fig. 
9 and Fig. 10 go high with task occurrence period.  

The curves of FRS change more in degree. This is 
because, not only the task success rate highly relies 
on the task completion time, but we presume that the 
task discovery rate plays a significant role, especially 

in FRS. FRS assigns tasks to robot4 (team of fewest 
number of robots) no matter which robot is the 
auctioneer. Thus, while robot4 tackles the tasks, 
other robots keep patrolling the environment. Since 
FRS chooses the team of fewest number of robots to 
tackle the discovered tasks, there are more robots 
patrolling the environment compared to other 
strategies, which results in an increase in task 
discovery rate. Thus we presume that not only the 
short task completion time, but also the high task 
discovery rate may indirectly lead to the cause of 
high task success rate of FRS.  

To what degree does the task discovery rate 
influence the task success rate? We need more 
experiments to examine this problem in the future. 
 

Table 5  Task success rate results 
 

Expiration time limit 
(unit:64ms) BES FRS

2000 74 % 70.8 %
5000 89.4 % 89.2 %

 

 
 
Figure 9  Comparison of FRS and BES for task 
success rate under the expiration time limit 2000 
cycles. The horizontal axis represents period of 
task occurrence and the vertical axis represents 
the task success rate. 
 

 
 
Figure 10  Comparison of FRS and BES for task 
success rate under the expiration time limit 5000 
cycles. The horizontal axis represents period of 
task occurrence and the vertical axis represents 
the task success rate. 
 
6. Conclusion 
 



In the experiment, Table 4 and Table 5 show the 
efficiency of BES, but the success rate of BES is a 
little better than that of FRS. More experiments need 
to confirm this condition in the future.  

In Section V-B, the supervise robot records the 
absent robot and keeps track of its absence. We plan 
to study more about the impact of this mechanism in 
the future. An interesting issue is that if the robots 
have the knowledge or information to predict the 
expiration time of the discovered tasks, some 
advanced algorithms need to be adopted.  

In addition, this work is preliminary and we 
expect to implement future work by physical 
experiments. Formalizing capability representation is 
also another possible next step.  

One of the disadvantages about market-based 
approaches is that the system heavily relies on 
reliable communication. This implementation also 
strongly assumes perfect communication. Therefore, 
we need to extend our research to the communication 
constraints.  

In the future, developing more advanced 
strategies and comparing with other coordination 
methods for improving our understanding of multi-
robot coordination are interesting and significant. 
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